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Abstract  

The standard version of the game Rock-Paper-Scissors is interesting in terms of game theory, but 

less so in terms of Statistics. However, we show that with a small rule change it can be made into 

an interactive exercise for degree-level students of Statistics that leads to a Bayesian change-point 

model, for which the Gibbs sampler provides an intuitive method of inference. First, students play 

the game to generate the data. Second, they are encouraged to formulate a model that reflects their 

experience from having played the game. And third, they participate in the development of a suitable 

MCMC algorithm to fit the model.  
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1. Introduction 

The processes of data collection, model building and inference are the main themes of any statistical 

analysis. For teachers of Statistics, however, there are few opportunities to involve students in the 

whole operation. This is especially true for analyses requiring advanced statistical techniques — the 

physical and time constraints of standard teaching environments are simply not conducive to this 

aspect of statistical learning. The aim of this article is to suggest a teaching exercise which illustrates 

the entire sequence of a statistical analysis from data collection to inference, with model and 

inference developed from a knowledge of the data-generating mechanism that is also part of the 

exercise. We have run the exercise ourselves with degree-level students following a course in 

Computational Statistics, though it could work equally well as a practical lesson in a Bayesian 

inference course. In either case, some basic knowledge of Bayesian Statistics is required, as is an 

understanding of the Gibbs sampler and Markov chain Monte Carlo (MCMC) in general. Our 

objective is to provide an interactive platform through which students can see and exploit the links 

between Bayesian theory, model building and simulation-based inference. 

The starting point for our developments is the well-known game of Rock-Paper-Scissors. Each of 

two players, labeled A and B respectively, simultaneously selects by hand caricature one of the three 

elements Rock, Paper and Scissors, which we abbreviate to {𝑅, 𝑃, 𝑆}. If both players select the same 

element the game is a draw; otherwise, using obvious notation, 𝑅 > 𝑆, 𝑆 > 𝑃 and 𝑃 > 𝑅. Several 

rounds are usually played, and the overall winner is the player with the most rounds won. The 

possible outcomes of the game are labeled A, X and B, corresponding to a win for A, a draw, and a 

win for B, respectively. Clearly, if each player chooses between {𝑅, 𝑃, 𝑆} at random, the A/X/B 

probabilities are identically 1/3. In general we write 𝜃 = (𝜋𝐴, 𝜋𝑋, 𝜋𝐵) to denote the vector of A/X/B 

probabilities, and use 𝜃0 to denote the special vector (1/3, 1/3, 1/3). 

From a game-theoretic point of view, Rock-Paper-Scissors is a simple zero-sum game whose Nash 

equilibrium solution corresponds to each player playing the elements of {𝑅, 𝑃, 𝑆}, each with 

probability 1/3 (see van den Nouweland, 2007, for example). There have also been various statistical 

studies of Rock-Paper-Scissors. For example, Wang, Xu and Zhou (2014) compare player behaviour 

in laboratory conditions, with expected behaviour under optimal Nash Equilibrium rules. At a more 

general level, Walker and Walker (2004) provide a strategy handbook for players. They describe, for 
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example, empirical evidence suggesting that players generally tend to choose 𝑆 on only around 30% 

of occasions. Knowing this, and assuming everything else equal, opponents have a slight advantage 

in selecting 𝑃 more often than random selection would imply. However, strategy issues like this are 

more interesting for their psychological or game-theoretical implications than for their statistical 

relevance. 

2. A Modified Version of Rock-Paper-Scissors 

Though the standard version of Rock-Paper-Scissors is of limited interest from a statistical point of 

view, a modification of the rules can lead to versions of the game that are more stimulating. 

Specifically, we suggest a novel variation which limits the play options for one of the players. In this 

way the other player has an advantage, but only once they correctly identify the limitations imposed 

on their opponent. The idea is then to challenge students to play this version of the game and develop 

a statistical model that will allow an observer to learn about the way the game has been played from 

the collected data. 

Students are placed in groups of three, comprising two players and an observer. The role of the 

observer is to record the sequence of match outcomes, A/X/B, though not the actual play choices of 

either player. Once all rounds have been played, these are the data that form the basis of the 

analysis. 

Before the game starts the two players are randomly given one of two instructions, I1 and I2. They 

are additionally told that one set of instructions corresponds to complete freedom in gameplay, but 

that the other imposes restrictions. In practice, we write the instructions on cards and ask each player 

to randomly select one without replacement. The instructions are: 

I1: You are free to choose from {𝑅, 𝑃, 𝑆} in every round;  

I2: You may only choose from {𝑃, 𝑆} in every round; 

and without loss of generality we can assume these are assigned to players A and B respectively. 

Therefore, Player A is playing to standard rules, while Player B is prohibited from playing 𝑅. As such, 

player B is at a disadvantage, but only once player A has deduced the limitation imposed on player 

B. The results themselves are analysed from the point of view of the observer, who sees only the 

sequence of A/X/B match outcomes, and is unaware of which player has which instruction, and 

indeed what the limitation is in instruction I2. 

Though players are not constrained to play randomly from the options available to them, our 

experience is that they tend to do so, at least approximately. Under random selection from the 

available sets, the A/X/B probabilities are still 𝜃 = 𝜃0. However, it is likely that Player A will eventually 

realise after a number of rounds that their opponent never plays 𝑅, and deduce that they have an 

improved strategy by selecting just from {𝑅, 𝑆}. The logic is that since player B never plays 𝑅, it is 

wasteful for player A to ever play 𝑃. If both players then select randomly from their reduced sets, it 

is easy to check that  𝜃 = (1/2, 1/4, 1/4). In real play, where players may choose not to make 

random plays, 𝜃 may differ slightly from this theoretical value, just as the standard version may have 

probabilities that differ from 𝜃0. In practice we have found that playing the game for 100 rounds 

provides a reasonable chance for player A to identify the limitations of player B and to change 

strategy accordingly.  

Once the game is played, students are asked to develop a statistical model based only on the A/X/B 

data with the objectives: 



 

58 MSOR Connections 18(1) – journals.gre.ac.uk 

1. To assess whether there has been a change of strategy during the 100 rounds, and if so to 

identify where it occurred; 

2. To estimate 𝜃 = (𝜋𝐴, 𝜋𝑋, 𝜋𝐵) for each round, accounting for the fact that there may have been 

a change of strategy for one of the players at some point. 

3. Model Building 

Getting students to play the game themselves serves two purposes. First, to obtain the data; second, 

to provide students with an experience of the data-generating process which, in turn, assists with 

appropriate model building. In practice what we have found is that some student pairs have made 

no change to strategy within the 100 rounds, and others have attempted several strategy changes. 

In most pairs, however, player A realises their advantage within the allocated 100 rounds and 

changes their play accordingly. 

The discussion of these various playing strategies is an integral part of the exercise. To simplify the 

model development, we ask students to make three assumptions when model-building: 

1. Player B maintains the same strategy at all rounds; 

2. Player A also maintains a single strategy, except possibly at one point where they realise 

their potential advantage and change strategy for the remaining rounds; 

3. In all rounds, both players make random choices from either all of, or a subset of, the options 

available to them. 

These are reasonable assumptions from both a game-theoretic and statistical point of view, but they 

may be inconsistent with some players’ actual strategy. This point itself can generate interesting 

discussion, but the bottom line is that simplifying assumptions of this type are necessary to construct 

a model which is both feasible and meets the stated objectives. 

Step-by-step, students can be led to the natural model that these assumptions imply: a change-point 

model with at most one single unknown change-point corresponding to the round in which player A 

exploits their advantage and no longer plays 𝑅. In greater detail: 

1. The game consists of 𝑛 rounds, each of which is a multinomial trial: 

𝑌𝑖 ∣ 𝜃𝑖 ∼ Multinomial(1, 𝜃𝑖),  𝑖 = 1, … , 𝑛, 

where the levels of 𝑌𝑖 are A/X/B with probabilities given by the vector 𝜃𝑖;  

2. There is an unknown change-point 𝑘 such that for 𝑖 ≤ 𝑘,  𝜃𝑖 = 𝜃(1), while for 𝑖 > 𝑘 , 𝜃𝑖 = 𝜃(2); 

3. There is the possibility that 𝑘 > 𝑛, corresponding to the situation where no change of strategy 

occurs within the 𝑛 observed rounds; 

4. In the early rounds the vector of A/X/B probabilities is likely to be close to 𝜃0, regardless of 

the strategies assigned to the players; 

5. There is likely to be a change in the pattern of A/X/B results as one of the players discovers 

their superior strategy; 

6. A priori we have no information about 𝜃(2); 

7. Any change in the pattern of results is likely to occur within a reasonable number of rounds, 

but unlikely to occur within the first few rounds. 

In terms of inference there is a strong argument to be made for the use of a Bayesian rather than a 

classical model (Killick, 2011, for example). The arguments are two-fold, and are worth elaborating 

with the students. The first argument is technical: Bayesian methods are better suited than classical 

methods for change-point problems, since they naturally admit marginalising over the uncertainty in 

the change-point. The second argument is practical: we have different knowledge about the A/X/B 

probabilities both previous to and after any possible change-point, and this is much more naturally 
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expressed via a Bayesian model. Previous to the change-point, for reasons discussed above, we 

anticipate 𝜃𝑖 to be close to 𝜃0. On the other hand, exchangeability in the players implies that  𝜃0 

remains a reasonable ‘best guess’ for 𝜃𝑖 even after the change-point, though there is no reason to 

believe that the actual probabilities will be close to this value. Lack of information on 𝜃(2) implies that 

any element of the valid space for the A/X/B probabilities,  

𝛥2 = {(𝑧1, 𝑧2, 𝑧3): 𝑧1 ≥ 0, 𝑧2 ≥ 0, 𝑧3 ≥ 0, 𝑧1 + 𝑧2 + 𝑧3 = 1}, 

is equally plausible for 𝜃(2) prior to observing the data.  

The next point we try to emphasise to students is the interplay between model structure and 

inference. What we are aiming for is an understanding that while a fundamental aspect of Bayesian 

inference is the inclusion of prior knowledge through prior distribution specification, such knowledge 

is generally limited to summaries of centrality and variability. More precise details about the shape 

of the prior distribution can be selected on grounds of computational convenience, which usually 

implies exploiting conditional conjugacy. For the multinomial change-point model this means 

choosing Dirichlet prior distributions for 𝜃(1) and 𝜃(2), most conveniently parametrised as 

𝜃 ∼ Dirichlet(𝜙, 𝑑), 

where 𝜙 ∈ 𝛥2 is the mean and 𝑑 > 0 is a dispersion parameter. Full definitions and properties are 

given in the Appendix. For the change-point model we then set 

𝜃(1) ∼ Dirichlet(𝜃0, 𝑑1),  𝜃(2) ∼ Dirichlet(𝜃0, 𝑑2), 

independently.  

The extent to which students can come up with these choices themselves depends on whether they 

have studied conjugacy both in general, and specifically in the context of multinomial models. 

Nonetheless, the arguments in favour of these choices are easily understood: 

1. The support  of the Dirichlet distribution, 𝛥2, coincides with the domain of  𝜃(1) and 𝜃(2); 

2. The parameter choices ensure that 𝜃0 is the prior mean for both  𝜃(1) and 𝜃(2); 

3. The scale parameters 𝑑1and 𝑑2 enable flexibility in the prior distributions for the 𝜃 parameters. 

Setting 𝑑2 = 3 gives a uniform prior on 𝛥2 for  𝜃(2), but specifying a considerably larger value 

for 𝑑1 leads to a greater concentration of the prior distribution of 𝜃(1) around 𝜃0. 

The remaining parameter is the change-point, 𝑘, whose theoretical domain is the entire set of positive 

integers, as the model assumes that a change will occur, even if this might happen after the allotted 

𝑛 rounds. However, the Gibbs sampler is considerably simplified (see Section 4 below) if the prior 

distribution for 𝑘 is bounded above at some pre-specified value 𝑘𝑚𝑎𝑥, which might be chosen to be 

much greater than 𝑛. Apart from this restriction, any choice can be made that is consistent with the 

prior knowledge that Player A is unlikely to learn their optimal strategy in the first few rounds, but is 

also unlikely to need very many rounds to learn it. To account for these aspects, we suggest a 

truncated Negative Binomial model for the prior probability function of the change-point: 

ℎ(𝑘) ∝ 𝑔(𝑘; 𝑚, 𝑣),  𝑘 = 1, … , 𝑘𝑚𝑎𝑥, 

for some value of 𝑘𝑚𝑎𝑥 ≥ 𝑛, where 𝑔(. ; 𝑚, 𝑣) is the probability function of the Negative Binomial 

distribution parametrised in terms of mean 𝑚 and variance 𝑣. This choice affords considerable 

flexibility in prior elicitation for the change-point through the specification of 𝑚, 𝑣 and 𝑘𝑚𝑎𝑥. However, 
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it is necessary that 𝑚 ≤ 𝑣 to satisfy the validity requirements of the Negative Binomial distribution. 

Furthermore, to avoid a monotonically decreasing prior distribution with mode at 1, the additional 

constraint 𝑣 ≤ 𝑚2 + 𝑚 should also be respected.  

4. Model Inference 

Assuming students have some background knowledge of Gibbs sampling, they can formulate, at 

least in outline, the following steps, all of which are implicitly conditional on the observed data: 

1. Choose arbitrary initial values for 𝑘, 𝜃(1) and 𝜃(2). Then iterate over the following steps: 

2. Given 𝑘, simulate from 

𝜃(1) ∼ Dirichlet(𝜃0 + 𝑐1, 𝑑1), 

where  𝑐1 = (𝑐1
(𝐴)

, 𝑐1
(𝑋)

, 𝑐1
(𝐵)

) is the vector counts of the outcomes A, X and B, respectively, 

among 𝑦1, … , 𝑦𝑘. 

3. Similarly, again given 𝑘, simulate from 

𝜃(2) ∼ Dirichlet(𝜃0 + 𝑐2, 𝑑2), 

where 𝑐2 = (𝑐2
(𝐴)

, 𝑐2
(𝑋)

, 𝑐2
(𝐵)

) is the vector counts of the outcomes A, X and B, respectively, 

among 𝑦𝑘+1, … , 𝑦𝑛, with the convention that 𝑐2 = (0,0,0) if this set is empty; 

4. Since 𝑘 is discrete and bounded, given 𝜃(1) and 𝜃(2), simulate from the full conditional 

probability function which, up to proportionality, is given by 

𝑓(𝑘) ∝ ℎ(𝑘) ∏
𝑖=1

𝑘

𝑓(𝑦𝑖 ∣ 𝜃(1)) ∏
𝑖=𝑘+1

𝑘𝑚𝑎𝑥

𝑓(𝑦𝑖 ∣ 𝜃(2)). 

In this expression ℎ is the prior change-point probability function and 𝑓(𝑦𝑖 ∣ 𝜃(1)) and 𝑓(𝑦𝑖 ∣ 𝜃(2)) are, 

respectively, the multinomial probability functions before and after round k, subject to the convention 

that 𝑓(𝑦𝑖 ∣ 𝜃(2)) = 1 whenever 𝑖 > 𝑘𝑚𝑎𝑥. In summary, the multinomial-Dirichlet conjugacy has been 

exploited to enable simple updates of the multinomial probability vectors given the current value of 

the change-point, while the change-point itself is updated via an enumeration of the full conditional 

probabilities, which is feasible because its support is discrete and bounded. 

We assume that students are familiar with the Gibbs sampler and issues about mixing and 

convergence of MCMC series. The neat structure of the above model leads to a Gibbs sampler that 

behaves well in both these respects. For protocol we assume a small burn-in period, discarding the 

first few simulations of the simulated Markov chain, but even this is not strictly necessary. 
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Figure 1. Left: Gibbs sample output of change-point parameter. Right: Comparison of 

prior (red) and posterior (green or histogram) distributions of change-point parameter. 

 

5. Analysis of Data 

Though students have generated their own data, it is easier for practical purposes to demonstrate 

the inference on simulated data. Using the statistical language R (R Core Team, 2017), functions for 

both simulating the data and fitting the model via the Gibbs sampler described above – either to 

genuine or simulated data – are available as supplementary material at the journal website. The only 

package required outside of the base R language is ggplot2 (Wickham, 2016), which we use to 

enable improved graphics. 

As an illustration, to simulate 𝑛 = 100 rounds with the default settings as described above, with 

Player A switching to the reduced set of plays {𝑅, 𝑆} after the 50th round, we write 

> rps_data<-rps_tournament_changepoint(n_games=100, changepoint=50) 

The output comprises the sequence of A/B/X results: 

> head(rps_data$simulated_data) 

[1] “B” “B” “X” “X” “X” “B” 

The Gibbs sampler is then run on the simulated object as follows: 

> rps_gs_out<-rps_gs(rps_data$simulated_data, d1=100, d2=3, m=50, v =1000) 
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For this example we have set 𝑑1 = 100, giving a prior choice on 𝜃(1) that is strongly concentrated on  

𝜃0, and 𝑑2 = 3, giving a uniform prior for  𝜃(2) on 𝛥2. The arguments for these choices have been 

discussed above. The prior for k has mean close to 50 but with a large variance. This choice of mean 

is slightly unfair, since in practice the true value would be unknown, but the consequences are 

mitigated by also having a large variance v. In any case, the Gibbs sampler is quick to run, so the 

sensitivity of results to these choices can be examined in real-time during class if that seems 

appropriate. Obviously, the simulated object can be replaced with actual data once collected to effect 

an analysis on the students’ own data. 

As with any Gibbs sampler, the output from these functions can be studied graphically to assess the 

performance of the sampler and to obtain summary inferences. For example, figure 1 shows the 

Gibbs sample output and a comparison between the prior and posterior distributions of the change-

point after 100 rounds. The Gibbs sampler tracer provides visual evidence of the satisfactory mixing 

and convergence of the chain. The comparison of prior and posterior distributions of the change-

point show the extent to which the data have transformed prior beliefs: having observed the data, 

the change-point is more likely to have occurred after 50 rounds than the prior assumed, and has a 

greater concentration than the prior. Nonetheless, the prior and posterior are reasonably similar, but 

this is hardly surprising given the limited amount of data with which the inference is being made. 

Note that both prior and posterior distributions are discrete having support on the positive integers, 

but the histogram and smoothed curves are shown on a continuous scale for ease of interpretation. 

Similar graphical analysis can be made on the multinomial probabilities 𝜃(1) and 𝜃(2), but more 

interesting in practice is the posterior for 𝜃𝑖 in the original model specification  

𝑌𝑖 ∣ 𝜃𝑖 ∼ Multinomial(1, 𝜃𝑖), 𝑖 = 1, … , 𝑛. 

In other words, having observed the data, what can be said about the A/B/X probabilities for each 

round? 

Since the change-point is unknown, the appropriate choice for 𝜃𝑖 between 𝜃(1) and 𝜃(2) is also 

unknown, but this is exactly the sort of situation in which the Gibbs sampler can be fully exploited, 

as the output for  (𝜃(1), 𝜃(2), 𝑘) can be transformed to give a Gibbs sample for 𝜃𝑖, through 

𝜃𝑖 = 𝜃(1)  if  𝑖 ≤ 𝑘 

𝜃𝑖 = 𝜃(2)  if  𝑖 > 𝑘. 

Applying this mapping to the original Gibbs sampler output generates a Gibbs sample of  𝜃𝑖. Figure 

2 summarises the result of this procedure for 𝑖 = 1, … ,100. The three panels represent respectively 

the three components of 𝜃𝑖, namely the A/X/B probabilities respectively. In each case, for each round 

𝑖, the summary is a box plot of the Gibbs sample of the relevant component of 𝜃𝑖, and therefore a 

graphical approximation to its posterior distribution. The central black curve is therefore a trace of 

the median of the distribution as a function of 𝑖; the red region is the inter-quartile range; the black 

stems extend to somewhere around 1.5 times the quartiles; and the yellow points indicate outlining 

points. Note that the posterior distributions here are conditional on data observed from all rounds, 

not just those up to round 𝑖; that’s to say, the distributions in figure 2 provide a smooth of the data, 

not a filter. 
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Figure 2. Gibbs sampler distributions of marginal posterior for game outcome 

probabilities as a function of round. Distributions are represented in standard boxplot 

form. 

 

For the early rounds, the posterior mean for 𝜃𝑖 is approximately 𝜃0, with a small posterior variance,  

in accordance with the strong information provided by the prior. After about 35 rounds, the possibility 

of a change-point starts to affect the posterior distributions on the 𝜃𝑖, to an increasing extent as more 

data become available. By the time we have the full set of data, the posterior mean has shifted much 

closer to the true value of 𝜃 = (1/2, 1/4, 1/4), albeit with larger posterior variances. Given what 

students have learnt about the process from playing the game, all aspects of the inference are 

entirely convincing.  

6. Discussion 

The exact way this exercise can be used will depend on the type and level of class in which it is 

introduced. The whole exercise, including data generation, model building and inference can usually 

be completed within two or three hours. Our own experience was with final-year undergraduate 

students, who had previously covered the basics of Bayesian Statistics, and were following a course 

on general computational methods, which included Bayesian techniques such as the Gibbs sampler. 

In that setting we used the exercise towards the end of the course as a way of reinforcing the links 

between inference and computation, emphasising the role of model construction for both aspects. In 

other teaching programmes which include separate modules based on case studies, this exercise 

could be used as one of the cases. The obvious limitation is that a knowledge of Bayesian inference 

and computational techniques is required to a level that is typically not studied until second-year 

undergraduate programmes. 
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The feedback we received from students, both informally and through student feedback 

questionnaires, was overwhelmingly positive. In our first attempt we were more vague about the 

instructions given to students, which led to inconsistencies for many pairs between the way they 

actually played the game and the single change-point model we had anticipated they would develop. 

By being more precise with the instructions, and also giving a stronger steer towards our intended 

model structure, we found the exercise to work much better, and students’ satisfaction to be greater. 

Possible tasks and extensions that can be suggested to students for further study include: 

1. A study of the sensitivity of results to prior choices. 

2. A more detailed analysis of the mixing and convergence properties of the Gibbs sampler. 

3. A change of protocol so that both players are given the same instructions. 

4. Running the Gibbs sampler on subsets of the data, using results from just the first 𝑛∗ rounds, 

for 𝑛∗ = 10,20, … ,100 . How does inference on 𝑘, 𝜃(1) and 𝜃(2) change as 𝑛∗ increases? 

Finally, although application of a change-point model to the modified Rock-Paper-Scissors game is 

just an educational exercise, students can also be made aware that change-point models of the type 

developed here have many real-world applications, including the identification of irregularities in DNA 

sequences. 

7. R code 

A zipped version of the R Studio project is available alongside this article from the MSOR 

Connections journal website https://journals.gre.ac.uk/index.php/msor/. Unzipping the file and 

opening in Studio gives immediate access to the functions and a script we used to produce the 

figures.  
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9. Appendix: The Dirichlet distribution 

The 3-dimensional Dirichlet distribution 𝐷(𝜙, 𝑑) where 𝜙 = (𝜙1, 𝜙2, 𝜙3) ∈ 𝛥2 and 𝑑 > 0 has 

probability density function 

𝑓(𝜃) ∝ 𝜃1
𝑑𝜙1−1

𝜃2
𝑑𝜙2−1

𝜃3
𝑑𝜙3−1

, 

for 𝜃 ∈ 𝛥2. Its expectation is 𝜙 and its variance decreases as 𝑑 increases, with a limiting variance of 

zero as 𝑑 → ∞. The choice 𝑑 = 3 and 𝜙 = (1/3,1/3,1/3) results in a uniform distribution on 𝛥2. It is 

a convenient prior distribution for a random variable that comprises a probability vector both because 

it has the correct support and because it provides a conjugate family for the Multinomial distribution. 

Specifically, if 𝑥 has the Multinomial distribution 

𝑥 ∣ 𝜃 ∼ Multinomial(𝑛, 𝜃), 

https://journals.gre.ac.uk/index.php/msor/
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where 𝑥1 + 𝑥2 + 𝑥3 = 𝑛, and 

𝜃 ∼ 𝐷(𝜙, 𝑑) 

then 

𝜃 ∣ 𝑥 ∼ 𝐷(𝜙 + 𝑥/𝑑, 𝑑). 
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