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A Blind Spot in Undergraduate Mathematics: the Circular 
Definition of the Length of the Circle, and How It Can Be Turned 
into an Enlightening Example 
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Abstract  

We highlight the fact that in undergraduate calculus, the number pi is defined via the length of the 

circle, the length of the circle is defined as a certain value of an inverse trigonometric function, and 

this value is defined via pi, thus forming a circular definition. We present a way in which this error 

can be rectified. We explain that this error is instructive and can be used as an enlightening topic for 

discussing different approaches to mathematics with undergraduate students.  
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1. Context 

What I describe is borne out of many years of my experience of teaching first-year undergraduate 

mathematics. Also my approach benefits from my research interests. After a period of conducting 

research in pure mathematics, I diversified in two directions. On the one hand, I train artificial 

intelligence to produce proofs of simple mathematical results. On the other hand, I explore how 

producing and noticing shapes and patterns helps the brain to learn mathematics. In the former 

context, mathematics is “more formal” than usual, and in the latter context, mathematics is much 

“less formal” than usual. This dual perspective gives me a unique vantage point to appreciate the 

interplay between different approaches to mathematics. The purpose of this note is to highlight one 

example from first-year university mathematics which, as I will show, can become a topic for an eye-

opening discussion on how “more formal” and “less formal” approaches to mathematics are both 

important for learning and understanding.  

This duality of mathematics is perceived by many maths lecturers and, unfortunately, is felt as 

something which must be, at best, overcome or, at worst, reluctantly tolerated. A passionately written 

example of it is Allenby’s book for first-year undergraduates Numbers and Proofs. Allenby writes 

about “good old days”, when “one learnt to construct proofs”, whereas “in recent years” “finding of 

strongly suggestive ‘patterns’ seems to have replaced real mathematical activity”. Having said this, 

Allenby seems grudgingly to recognise persuasive limitations of “real” mathematics, saying that at 

the basic level, learners of mathematics should “be happy to accept certain easily believed, simple 

assertions as being unquestionably true” and at the advanced level, mathematicians “often have to 

read over proofs of results they ‘know’ (that is, ‘feel in their bones’) are true, just to see if the argument 

given is sufficient to establish a result they, in any case, believe”.  

However, as we discuss below, it is perfectly possible to appreciate the importance of both processes 

of “constructing proofs” and “feeling in one’s bones that a result is true”, and I believe it is possible 

and desirable to talk about this to students, using suitable examples like the one below. 
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2. The vicious circle 

How do you define number 𝜋? If you are like me, you define it as a half of the length of the unit circle 

(and this definition, or an equivalent definition, is given in mathematical dictionaries). The next 

question is, how do we define the length of the unit circle? Undergraduate calculus (or engineering 

mathematics) tells us that the length of a curve represented by a function 𝑦 = 𝑓(𝑥) is defined as 

∫ √1 + (
d𝑦

d𝑥
)

2𝑏

𝑎
d𝑥. Consider the unit circle defined by the equation 𝑥2 + 𝑦2 = 1. Let us use the 

definition of the length of the curve as expressed by the integral above to find the length of the top-

right quarter of this circle. The function is 𝑓(𝑥) = √1 − 𝑥2, and the limits or integration are 𝑎 = 0, 𝑏 =

1. Accordingly, the length of the quarter-circle is expressed as  

∫ √1 +
𝑥2

1−𝑥2

1

0
d𝑥, which can be simplified to ∫

d𝑥

√1−𝑥2

1

0
. We can look up this integral in the table of 

indefinite integrals; it is an inverse trigonometric function sin−1(𝑥). To finish finding the value of the 

definite integral, we will need the value of sin−1(𝑥) at 𝑥 = 1, so we look up the definition of sin−1(𝑥) 

and find out that the value of sin−1(1) is defined to be equal to 
𝜋

2
. We have come full circle: 

unexpectedly, in undergraduate mathematics the value of number 𝜋 is defined via the value of 

number 𝜋. 

One can attempt to bypass this circular definition by representing the circle in the parametric form. 

As we will see now, this does not help. Let us start from the beginning again; we want to define 

number 𝜋; it is defined as a half of the length of the unit circle; but what is the length of the unit circle? 

If a curve is given by a parametric representation 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡) then its length is defined as 

∫ √(
d𝑥

d𝑡
)

2
+ (

d𝑦

d𝑡
)

2𝑏

𝑎
d𝑡. For the unit circle defined by the equation 𝑥2 + 𝑦2 = 1, according to 

undergraduate calculus (or engineering mathematics), we have 𝑥 = cos 𝑡, 𝑦 = sin 𝑡, and 𝑡 varies from 

𝑎 = 0 to 𝑏 = 2𝜋. Therefore, the integral turns into ∫ 1
2𝜋

0
d𝑡 and is equal to 2𝜋. If we knew what the 

value of 𝜋 is, this would be a perfectly satisfactory answer. However, we do not know yet what 𝜋 is; 

we were taking this integral hoping to use the answer as a definition of 𝜋, and it does not help us, 

because it only says, basically, that the value of 2𝜋 is defined as being equal to 2𝜋. 

Why is it a problem? This is a circular definition. Perhaps the value of 𝜋 actually does not exist. 

Perhaps function  sin−1(𝑥) is not defined at 𝑥 = 1. Perhaps the unit circle does not have length. By 

defining these concepts one via another we might be creating an illusion of a watertight mathematical 

exposition, but what if none of these things exist?  

The circular definitions in this section are not artificially constructed by me to bewilder you; as you 

can check by perusing textbooks on calculus or engineering mathematics, they really form a part of 

undergraduate courses in mathematics. Here are examples from books which are perfectly good in 

other respects. Calculus by Varberg et al. contains an exercise asking to find the circumference of 

the circle, with a solution equivalent to the integral ∫ 1
2𝜋

0
d𝑡 = 2𝜋 above, whereas some 250 pages 

earlier in the book, the circumference of the circle has already been said to be 2𝜋 (and this is where 

2𝜋 in the limits of integration comes from). The same approach is used in Thomas’ Calculus by 

Thomas et al.; an exercise asks to find the circumference of a circle using the parametric 

representation, and some 400 pages earlier in the book, the definition of radians implicitly defines 

the length of the unit circle as 2𝜋. In Calculus by Sullivan and Miranda, inverse trigonometric 

functions are defined, including the fact that sin−1(𝑥) =
𝜋

2
; then, some 400 pages later, an exercise 

similar to ∫
d𝑥

√1−𝑥2

1

0
 above is presented, but not solved; some 600 pages later, in the appendix, the 

length of the unit circle is said to be 2𝜋; at last, some 100 pages later, in another appendix, a table 
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of integrals instructs us to use sin−1(𝑥) to take the integral. As you can see, this circular definition 

naturally involves referring to a number of chapters in undergraduate mathematics, separated by 

hundreds of pages in textbooks, and this is why it is likely to remain unnoticed by students and, 

perhaps, some lecturers.  

Thus, we have to conclude that undergraduate mathematics leaves the question of the existence of 

𝜋 open. Perhaps 𝜋, and the length of the circle, and the inverse trigonometric functions exist, or 

perhaps they do not.  

3. How can an undergraduate student define 𝝅? 

A good news is that 𝜋, and sin−1(𝑥), and the length of the circle exist. Here is how we could define 

them without circular definitions in a way which a determined undergraduate student could follow. 

As we consider integral ∫
d𝑥

√1−𝑥2

1

0
, of course we cannot say that it is sin−1(𝑥) because we don’t know 

yet if function sin−1(𝑥) exists. However, we can formally consider a function 𝑓 such that 𝑓(0) = 0 

and 𝑓′ =
1

√1−𝑥2
, and with some effort, we can write the Maclaurin series of 𝑓; let us denote this series 

by 𝑀(𝑥). Unfortunately, it is difficult to prove that 𝑀(𝑥) converges, and it is especially difficult to 

prove that 𝑀(1) converges, and I would not expect a first-year student to be much interested in all 

details of these proofs. But fortunately, and importantly, these proofs involve only real analysis and 

number theory and don’t depend on the existence of 𝜋. (See Section 6 for a plan of the proof.) 

After we have satisfied ourselves that one can prove that 𝑀(𝑥) converges, recall that ∫
d𝑥

√1−𝑥2

1

0
=

𝑀(1) is the length of a quarter of the unit circle; therefore, the length of the unit circle exists and is 

equal to 4 ∫
d𝑥

√1−𝑥2

1

0
= 4𝑀(1). Number 𝜋 is a defined as a half of this length, that is, 𝜋 exists and is 

equal to 2𝑀(1), or, to be more specific, 𝜋 = 2 +
1

3
+

3

20
+ ⋯.  

At last, we can define sin−1(𝑥) to be equal to 𝑀(𝑥). Note that function sin 𝑥 is still not defined. Indeed, 

sin 𝑥 is defined in undergraduate calculus (or engineering mathematics) either using angles in 

triangles or using arc lengths in the unit circle. While we did not know what 𝜋 is, we could not measure 

angles in radians, and while we did not know that the unit circle has length, we could not measure 

arc lengths. Now that we know that function sin−1(𝑥) exists, we can define sin 𝑥 as the inverse 

function of sin−1(𝑥).  

4. Other constructions 

After searching literature and asking colleagues, it seems that the only non-circular definition of 𝜋 

available in books is as twice the smallest positive solution of the equation cos 𝑥  = 0, where function 

cos 𝑥   is defined as a Maclaurin series. This definition is known as the definition of 𝜋 from Edmund 

Landau’s textbook Differential and integral calculus (see Definitions 60 and 61). Remmert, in an 

interesting article “What is 𝜋?”, discussing the history of this definition, states that “the definition of 
1

2
𝜋  as the smallest positive zero of cos 𝑥  is now commonplace”. However, in my experience, no 

undergraduate textbook on calculus or engineering mathematics attempts to give a non-circular 

definition of 𝜋.  
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When I compare Landau’s definition of 𝜋 with that proposed in the previous section, I feel that the 

latter is slightly more practical in an undergraduate course because, firstly, it is explicitly motivated 

by the aim of finding the length of the circle and, secondly, immediately proposes an explicit way of 

calculating the value of 𝜋. 

When I discussed these ideas with colleagues, they naturally asked if series ∑
1

𝑛2
∞
𝑛=1 =

𝜋2

6
 , also 

known in another notation as 𝜁(2) =
𝜋2

6
, can be used as a definition of 𝜋. The answer is no, we cannot 

use this equality to define 𝜋. Indeed, there are many known proofs of this equality, and each one of 

them requires good knowledge both of trigonometric functions and of the role 𝜋 plays in trigonometry 

(for example, it helps to know that the period of sin 𝑥 is 2𝜋, or that the zeros of sin 𝑥 are exactly the 

multiples of 𝜋). Now suppose we consider series ∑
1

𝑛2
∞
𝑛=1  without having defined 𝜋. We can prove 

that the series converges, but then we reach a dead end, in the sense that without knowing enough 

about trigonometric functions and the length of the circle we will not be able to show that the sum of 

the series has something to do with either. (There are also other formulas involving 𝜋, for example, 

the Wallis product and Stirling’s formula, and the same argument applies to them, too.) 

5. Turning it into an enriching experience 

Now that I know that the definition of 𝜋 and the length of the circle in undergraduate mathematics is 

circular and, therefore, invalid, what am I supposed to do about it?  

One approach is to ignore this fact and to continue teaching in the usual way, without telling my 

students about it. However, if I do this, I miss an opportunity to talk to my students about interesting 

and important details of the way mathematics is developed and used. 

Another approach is to stress the validity of the intuitive understanding of mathematics. If we equip 

ourselves with a measuring tape and examples of circles (for examples, some pots and pans), we 

can convince ourselves that circles have length, and 𝜋 exists. Then I can tell students that the formal 

definition of the circle length and 𝜋 in undergraduate mathematics is flawed, but it does not matter, 

because from our experience we know that circles have length, and 𝜋 exists. Although this approach 

is practical, I believe it sends a wrong message to students; we want to feel that mathematics is 

robust and logical.  

Yet another approach is to shun the intuitive understanding of 𝜋 as invalid, and follow the formal 

approach thoroughly, defining the value of 𝜋 to be 2 +
1

3
+

3

20
+ ⋯, as I described in Section 3. 

Although there is some appeal in this approach, I believe it is unnatural. For instance, we want to be 

able to use the usual geometric definition of 𝜋. The series 2 +
1

3
+

3

20
+ ⋯ looks contrived, and 

speaking practically, it is not even a good way to approximate the value of 𝜋. We want to be able to 

use a geometric definition of sin 𝑥, rather than defining it as an inverse function of a certain Maclaurin 

series.  

I believe that the best solution is to combine the above approaches and to explain to students 

different facets of mathematical practice, approximately as follows.  

“It is true that our experiments with pots and pans do enable us to produce perfectly workable 

definitions of the circle length and 𝜋. It is an inspiring example of ingenuity of human mind that after 

some experiments with circles, in one stroke of genius we can conceive of a range of useful 

mathematical concepts.  
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“It is true that in comparison with this intuitive ingenuity, formal mathematics feels like a blunt tool; a 

mathematician needs to write hundreds of pages defining limits, series, integrals etc. before she is 

able to define the circle length and 𝜋. However, on the positive side, we must recognise that the 

mathematician can achieve the result, and the circle length and 𝜋 can be defined formally. Therefore, 

separately from our intuitive ingenuity at conceiving mathematical concepts, we should also 

celebrate the mastery of mathematicians at wielding formal mathematical tools. As we do this, we 

should also appreciate the surprising reach of formal mathematics; formal mathematical arguments 

might feel circuitous, but they eventually catch up with our expectations, enriching our understanding 

on the way.  

“What I described is a rich multifaceted picture of mathematics; however, this is not yet the whole 

story. Formal mathematics is intentionally moulded to fit in with our informal understanding of 

mathematics. Indeed, mathematicians actively wanted circles to be defined in such a way that they 

have length, and 𝜋 to be defined so that its value matches the value measured in experiments. This 

is why mathematicians spent two thousand years perfecting definitions of limits, series, integrals etc. 

until these definitions, whereas satisfactorily formal and logical, also matched our informal concepts 

of the circle length and 𝜋.”  

Understanding and untangling the circular definition described in this note, and making it formal, 

involves the use of a wide range of topics of undergraduate mathematics, as we saw in Section 2 

and 3. This, in itself, is enough to make this circular definition worth discussing with students. 

However, what makes this circular definition a special example to me is how disengaged our intuitive 

understanding of the circle length and 𝜋, on the one hand, and the formal definitions of them, on the 

other hand, are from each other. This gap is the reason why this circular definition appears 

repeatedly in calculus (or engineering mathematics) textbooks and remains unnoticed by students. 

This is where an opportunity arises; this circular definition is a perfect material on which the role of 

different approaches to mathematics can be explored and discussed.  

6. Appendix: a plan of the proof 

We consider a function 𝑓 such that 𝑓(0) = 0 and 𝑓′ =
1

√1−𝑥2
. We want to build the Maclaurin series 

of 𝑓, which we denote by 𝑀(𝑥), and then we want to show that 𝑀(1) converges. 

There are many proofs showing that 𝑀(𝑥) = ∑ (
1

2𝑛+1
⋅ (

2𝑛
𝑛

) ⋅
1

4𝑛 ⋅ 𝑥2𝑛+1)∞
𝑛=1 ; none of these proofs is 

very short, but an undergraduate student should be able to understand some of them.  

Therefore, 𝑀(1) = ∑ (
1

2𝑛+1
⋅ (

2𝑛
𝑛

) ⋅
1

4𝑛)∞
𝑛=1 . 

Naturally, the next step is to approximate 𝑀(1) and then show that it converges using the p-series 

test. The part on which we need to concentrate is (
2𝑛
𝑛

). The standard tool for approximating the 

central binomial coefficient is Stirling’s approximation, but we may not use it, because it employs 𝜋. 

Fortunately, there are other formulas which can be usefully applied here, for example, the inequality 

(
2𝑛
𝑛

) ≤ 4𝑛 ⋅
3

4
⋅

1

√n+1
.. Proofs of these formulas are technical, but they are short and can be understood 

by an undergraduate student.  

  



MSOR Connections 20(3) – journals.gre.ac.uk  90 

7. References 

Allenby, R., 1997. Numbers and proofs. Elsevier. 

Landau, E., 1951. Differential and integral calculus. Chelsea Publishing Company. 

Remmert, Reinhold, 2012. "Ch. 5 What is 𝜋?". In Heinz-Dieter Ebbinghaus; Hans Hermes; Friedrich 

Hirzebruch; Max Koecher; Klaus Mainzer; Jürgen Neukirch; Alexander Prestel; Reinhold Remmert 

(eds.). Numbers. Springer. 

Sullivan, M. and Miranda, K., 2014. Calculus: Early Transcendentals. Macmillan Learning. 

Thomas, G.B., Finney, R.L., Weir, M.D. and Giordano, F.R., 2003. Thomas' Calculus. Addison-

Wesley. 

Varberg, D., Purcell, E. and Rigdon, S. E., 2007. Calculus. Pearson Prentice Hall. 

 

 

  


