

MSOR Connections 21(1) – journals.gre.ac.uk 29

RESOURCE REVIEW

Automatic Assessment of Mathematical Programming
Exercises with Numbas
Chris Graham, School of Mathematics, Statistics & Physics, Newcastle University, United Kingdom
Email: christopher.graham@ncl.ac.uk
George Stagg, School of Mathematics, Statistics & Physics, Newcastle University
Christian Lawson-Perfect, School of Mathematics, Statistics & Physics, Newcastle University
Aamir Khan, School of Mathematics, Statistics & Physics, Newcastle University

Abstract
As programming has become a common feature of undergraduate mathematics degrees, there has
been an increasing focus on how to teach and assess the subject to mathematicians. The potential
benefits of e-assessment of basic programming exercises have many parallels with assessment in
mathematics where e-assessment tools are widely used: the chance to give instant feedback to
students offers an opportunity to allow students to work at their own pace, accommodating the
disparate background in programming that often exists in undergraduate mathematics cohorts. And
the randomisation of question content not only offers a powerful tool for practice, with students able
to repeat similar problems over and over, it also can offer some protection against plagiarism in a
subject where, just like a solution to some mathematical problems, student answers to identical
problems are likely to be very similar. This paper considers an extension to Numbas to automatically
assess programming exercises and the successful implementation of the resource in undergraduate
modules using the programming languages R and Python.

Keywords: Assessment, E-Assessment, Programming, Coding, Computing, Numbas

1. Introduction
This paper considers the development of the Numbas e-assessment software to automatically mark
programming exercises using the R and Python programming languages, and its application to both
practice and summative assessment in two modules in the School of Mathematics, Statistics &
Physics at Newcastle University. Section 2 gives some background on the use of programming and
the motivation for automatically marking programming exercises. Section 3 describes the new
extension to Numbas and how programming questions make use of the well-established features of
the system. Section 4 gives more detail on how the new programming feature is used in
mathematical programming modules, including the format of assessments and feedback from
students.

2. Background
2.1 Computing in the mathematics curriculum

Modules dedicated to computer programming have been a compulsory component of the single-
honours mathematics degree programme at Newcastle University since 2015. The addition of
computing to the curriculum is in common with many other mathematics departments in the United
Kingdom (Sangwin, 2017), motivated by the increasing relevance of computers in mathematical
teaching and research, and in the future career prospects of undergraduate students.

At Newcastle University, students take dedicated computing modules at stages 1 and 2 of the
mathematics and physics programmes, focussing on R and Python, with computing embedded in
many modules later in the degree, such as Mathematical Biology and Big Data Analytics. At stage 1

34 MSOR Connections 21(1) – journals.gre.ac.uk

• validation tests check that the student’s answer is valid, for example to reject an answer that
does not define a specific variable or function. These are run after a built-in validation test,
which checks whether the student’s code runs without error.

• Marking tests, which decide how much credit to give to the student.

The outcomes of the validation and marking tests feed into the Numbas marking algorithm, to apply
credit and give feedback to the student. Figure 1 illustrates a basic question using the programming
extension. The student receives immediate feedback on their work. They are also able to reveal a
correct answer to the question (this feature can be disabled for summative assessment), and a
worked solution or explanation can be provided.

3.3 How the code extension uses Numbas features

The functionality of accepting code, marking and presenting feedback is enhanced by a number of
features in Numbas which, even though originally designed for mathematics, have very clear
applications to programming exercises.

3.3.1 Alternative answers

The question presented in Figure 1 has a highly anticipated incorrect answer: students on our
programme study both Python and R, where the indexing of lists and arrays begins from 1, and not
0, as they do in Python. Numbas has an alternative answers feature, which can be used to catch,
optionally give credit, and provide feedback for specific answers that the author anticipates. In the
case of the question in Figure 1, Numbas can give feedback for the case where the student answer
retrieves the list element at index 1, as illustrated in Figure 2.

Figure 2. Alternative answer feedback provided for the anticipated incorrect answer to
the question in Figure 1, where a student enters seq[1] (correct for some other
programming languages, including R) instead of seq[0].

3.3.2 Scaffolding using ‘steps’ and ‘explore mode’

Whilst the alternative answers feature can help to give feedback on common errors, other Numbas
features assist students struggling to actually get started with a question. These features have been
used extensively in the formative material for the modules, including the handout exercises.

MSOR Connections 21(1) – journals.gre.ac.uk 35

The steps feature has been a part of Numbas since its inception, inherited from the CALM Project
for Computer Aided Learning in Mathematics (Beevers, 2003). Steps allow a basic hint to be
presented to the student, for example a reminder of the syntax to use for a particular programming
instruction, or of the relevant in-built function to use. Steps can also be used to scaffold a question
into smaller chunks, as illustrated in Figures 3a and 3b, for an example which calculates the sum of
a series of numbers through operations on numeric arrays. This is particularly useful for questions
which require a more substantial block of code to be entered by the student, giving the opportunity
to get feedback on each step.

Figure 3a. A question presented as a single answer box, with a Show steps button.
This sort of question would be typical of a handout exercise where students will often
struggle to get started answering the question. The steps offer an “in” to the student
and could take the form of a hint or individual answer boxes (Figure 3b).

Figure 3b. The steps in this question break the task down into individual one line
responses from the student. Each step is a fully-featured code question part which can
give feedback to the student using marking and validation tests, and utilise other
features such as alternative answers.

36 MSOR Connections 21(1) – journals.gre.ac.uk

A similar approach to scaffolding a question can be made using the explore mode feature of Numbas.
In this mode, Numbas presents individual parts of a question one at a time to the student, with
subsequent parts that can vary depending on the choices made by the student, or their interaction
with previous parts. By presenting a question in explore mode, students can be guided step-by-step
through a more substantial coding task. In Figure 4, an example is given of an object representing a
rectangle, constructed as a class in Python, in which the first part of the question asks the student
to make a basic class definition. After submitting that part, they can add more code to their question
in subsequent parts to add methods to calculate the rectangle’s area and perimeter, and to use their
class in a practical application. The question uses the variable replacement feature to include the
student’s code from the first part of the question as the placeholder for the second, and so on, so
that they can build up a solution.

Figure 4. A question on Python classes using explore mode in Numbas. In the first part,
the student is asked to create a basic definition of a class for a rectangle. Once they
have successfully completed this step, the second part (pictured) asks the student to
build on their existing code, adding a method to calculate the area. They can then later
move on to add more methods or use the class.

3.3.3 Randomisation

Randomisation is a key feature of mathematical e-assessment, whereby similar questions generated
using, for example, a different coefficient of an equation, or numeric value of a property can provide
substantial practice for students in a formative mode, or to provide students with different
assessment questions, encouraging students to work independently. These motivations are entirely
consistent for programming questions, particularly in the context of mathematics.

Randomisation could be different data to work with, or different equations to solve numerically, or
even the names of functions or variables. The randomisation of the question itself can make use of
the extensive functionality of Numbas, and is passed to the marking test that is applied to the
student’s code. Figure 5 illustrates a basic example.

MSOR Connections 21(1) – journals.gre.ac.uk 37

Figure 5. An example of a randomised question. The matrix is randomised to change
the values and locations on the diagonals. Different variants of the question can help to
reinforce the syntax of the function used to generate the matrix, or to give each student
a different version, whilst assessing the same learning outcomes in an equivalent way.

3.3.4 Other part types

Asking for code input is not always necessary or the most appropriate way to assess a programming
question. Sometimes a number entry box to accept the output of a computation is a good alternative.
In the example in Figure 6, the student is asked for the value of the best fit coefficients of a function,
fitted using a Python curve fitting function. In this case, as it is a handout exercise, there is no
pressing need to ensure that they have used Python to carry out the task, and by asking for the
numeric value it encourages the student to interpret the output of their code. In this case, this requires
the student to understand the output of the function, but this could also be critical analysis of whether
the code gives sensible values for their problem.

The question in Figure 6 cannot be easily randomised using standard Numbas functionality: it is not
practical for a question author to rewrite the algorithm used by the curve_fit function to identify
the expected answers. There is the option of a fixed question, with hard-coded data values and
answers, but the programming extension offers another more sophisticated option: as part of the
part’s marking algorithm, Numbas can invoke the code extensionprogramming extension to calculate
and set the correct numeric answers for the part, by providing it with the code for the correct answer.

In practice, in the application of the programming extension to our modules, many other part types
are mixed with the code input, including number entry, mathematical expressions, multiple choice
and parts which were marked offline.

38 MSOR Connections 21(1) – journals.gre.ac.uk

In [1]: opt.curve_fit(f, x, y)
Out[1]:
(array([-1.981337 , 0.78474439, -0.31518832]),
array([[9.57167127e-03, -1.09701508e-06, -1.01745329e-03],
 [-1.09701508e-06, 3.22775144e-04, 3.91115264e-07],
 [-1.01745329e-03, 3.91115264e-07, 3.23836523e-04]]))

Figure 6. A curve fitting question (top) which asks for numeric values of the best fit
coefficients of a given function, rather than the code to obtain them. The question
requires the student to interpret the output of the function (bottom), which is a Python
tuple, in which the first element is an array of the best fit coefficients, in an order
consistent with that specified in their user-defined function (the second value in the
tuple being a covariance matrix). Students must understand how the function
constructs its output, in order to interpret it and answer the question correctly. In this
case, marking the student’s code may not be the most approriate means of checking
their understanding.

4. Application to programming modules
Used throughout two modules in Python programming in the academic year 2021/22. 100% of
question content was delivered via Numbas, though not all assessed automatically.

4.1. Practical handouts

The original motivation for developing a code marking feature to Numbas was to offer feedback on
exercise questions in practical sessions. These exercises are embedded inside “virtual handouts”,
which have in recent years replaced physical handouts and are presented in a web-based format
using the Chirun software (Stagg et al, 2022). The format allows students to seamlessly move to an
exercise from the relevant handout content.

MSOR Connections 21(1) – journals.gre.ac.uk 39

Figure 7. A sample of a “virtual handout” used to deliver practical material. The
handouts mix theory, commands to try out, and exercises to complete.

Using the new Numbas extension, the handouts provide instant personalised feedback that students
can access at their own pace, with the opportunity to get a hint on a question that they cannot start
or break it down into more manageable steps. Whilst the move towards Numbas exercises
successfully allowed the modules to be delivered without practical sessions in the pandemic-affected
2020/21 academic year, the most noticeable impact has been on the running of practicals since the
return to in-person teaching, where students are more self-sufficient, reducing the low-level queries
for demonstrators and allowing them to focus on more meaningful conversations and focussed
assistance.

Feedback from students was obtained through two evaluations: the first four weeks into the
semester, to capture any early issues and suggestions, followed by a second at the end of the
module. In both cases, this took the form of qualitiative, free-text feedback. The format is popular
with students:

“The handouts strike a good balance between being accessible to the students who've
never used Python as well as challenging those who have had more practise. I like the
freedom of the practical sessions to work through the handout at your own pace.”

“The delivery of the material is interactive and something we can work through and
come back to if needs be.”

“I like that I can work through the handout so that I'm learning in the best way for
myself, at my own pace.”

40 MSOR Connections 21(1) – journals.gre.ac.uk

However, students commented that despite feedback and solutions being available in Numbas, they
still like seeing the module leader go through the solutions to handout exercises live, or in a video.

4.2 Practice material

Supplementing each week’s handout is a set of formative “Test Yourself” exercises available
throughout the semester. These are split into three groups of questions:

• ‘Warm up’ questions allow an easy route into the material. They might focus on some of the
key theory from the week’s content presented as questions to remove the coding element.
They sometimes involve simple tasks focussing on common errors: for example, students
are presented with complete code that contains an error and are asked to make a fix, such
that the code gives the expected outcome.

• A group of standard questions that are based on the week’s handout material. These were
designed to be comprehensive, covering the entire week of material even if questions
overlapped with the Numbas handout questions.

• ‘Bonus questions’ which offer an additional challenge for those who are excelling at the
module. These would usually stretch the material beyond the module content, or apply the
ideas to something completely left field, for example generating pixel art using the knowledge
gained from creating and manipulating 2D arrays.

Engagement with the “Test Yourself” practice material was lower than the practical handout
exercises, but very high for optional material, in comparison to other modules on the programme:
taking the stage 2 Python numerical methods module as an example, 76% of students tried the first
set of Test Yourself exercises, with a steady decline to 50% attempting the later sets, which were
perhaps superseded by the release of a mock exam.

4.3. Summative assessment

Each of the modules was structured into three assessments: the first was an assessment open for
an extended period, covering the foundations of the respective modules; the second a report-style
assessment; the third an off-campus class test. In all cases, assessments were open-book, so as to
be more authentic, since students will rarely be programming without access to resources.

A key aspect of the summative assessment was their hybrid format, where parts of some questions
presented in Numbas were not marked automatically, rather solutions were uploaded to our
institution’s VLE for human marking at a later date. These parts typically did not lend themselves to
online marking. For example, a question on curve fitting, such as that in Figure 6, might go on to ask
the student to plot the data and best fit curve. The presentation element of this part of the question
is difficult to mark automatically. Similarly, in the report-style assessment, students were asked to
upload their code, and feedback was given on the structure, the code efficiency and other aspects
such as the use of comments and appropriate variable names.

The hybrid format was very effective in allowing the marking time to be focussed where it is most
impactful, and the response from students in the evaluations was favourable:

"The feedback from our assignments was detailed and personal to us
and gave us information on what we did well and where we can improve."

MSOR Connections 21(1) – journals.gre.ac.uk 41

Another Numbas feature used extensively in the summative assessments was the re-marking
provision in the Numbas LTI tool, which manages student attempts. Since the introduction of
programming assessments is fairly new, it was often the case that alternative approaches, deserving
of credit, were identified on inspection of student attempts. The re-marking feature allows
assessment questions to be updated, in this case to add additional marking tests, before attempts
are bulk re-marked, ensuring fairness in marking across the cohort.

5. Future work
The academic year 2022/23 will see a full implementation of the latest client-side version of the
Numbas programming extension in our Python teaching, as well as an expansion of its use for R
teaching. A more substantial set of example programming questions is planned for the Numbas
Open Resource Library.

6. Resources
A demonstration of the Numbas programming extension is available at:
https://numbas.mathcentre.ac.uk/exam/26300/programming-extension-demo/preview/

7. References
Ala-Mutka, K.M., 2005. A survey of automated assessment approaches for programming
assignments. Computer science education, 15(2), pp.83-102.

Blank, D.S., Bourgin, D., Brown, A., Bussonnier, M., Frederic, J., Granger, B., Griffiths, T.L.,
Hamrick, J., Kelley, K., Pacer, M. and Page, L., 2019. nbgrader: A tool for creating and grading
assignments in the Jupyter Notebook. The Journal of Open Source Education, 2(11).

Beevers, C.E. and Paterson, J.S., 2003. Automatic assessment of problem-solving skills in
Mathematics. Active Learning in Higher Education, 4(2), pp.127-144.

Cloud9 and Mozilla. Ace - high performance code editor for the web [Computer software].
https://ace.c9.io/ [Accessed 1 March 2022].

Croft, D. and England, M., 2020, January. Computing with CodeRunner at Coventry University:
Automated summative assessment of Python and C++ code. In Proceedings of the 4th Conference
on Computing Education Practice 2020, pp. 1-4.

Foster, B., Perfect, C. and Youd, A., 2012. A completely client-side approach to e-assessment and
e-learning of mathematics and statistics. International Journal of e-Assessment, 2(2).

Graham, C., 2020. Assessment of computing in the mathematics curriculum using Numbas. MSOR
Connections, 18(2).

Gwynllyw, R. and Henderson, K., 2009, August. DEWIS-a computer aided assessment system for
mathematics and statistics. In CETL-MSOR Conference 2008.

Ihantola, P., Ahoniemi, T., Karavirta, V. and Seppälä, O., 2010, October. Review of recent systems
for automatic assessment of programming assignments. In Proceedings of the 10th Koli calling
international conference on computing education research, pp. 86-93.

Lobb, R. and Harlow, J., 2016. Coderunner: A tool for assessing computer programming skills.
ACM Inroads, 7(1), pp.47-51.

https://numbas.mathcentre.ac.uk/exam/26300/programming-extension-demo/preview/
https://ace.c9.io/

42 MSOR Connections 21(1) – journals.gre.ac.uk

Lawson-Perfect, C., Foster, W., Youd, A., Graham, C. and Stagg, G. 2021. Numbas (Version v6.0)
[Computer software]. Available at: https://github.com/numbas/Numbas/ [Accessed 1 March 2022].

Perfect, C., 2015. A demonstration of Numbas, an e-assessment system for mathematical
disciplines. In CAA Conference, pp. 1-8.

Pyodide contributors and Mozilla. 2019-2021. Pyodide (Version v0.19.1) [Computer software].
Available at: https://github.com/pyodide/pyodide [Accessed 1 March 2022].

Sangwin, C., 2015. Computer aided assessment of mathematics using STACK. In Selected regular
lectures from the 12th international congress on mathematical education, pp. 695-713. Springer,
Cham.

Sangwin, C.J. and O’Toole, C., 2017. Computer programming in the UK undergraduate
mathematics curriculum. International Journal of Mathematical Education in Science and
Technology, 48(8), pp.1133-1152.

Sangwin, C.J., 2019. Automatic assessment of students’ code using CodeRunner. IMA Higher
Education Teaching and Learning Series. https://maths.mdx.ac.uk/wp-
content/uploads/2019/09/2019-6-IMA.pdf [Accessed 1 March 2022]

Stagg, G., Graham C. and Lawson-Perfect, C., 2022, Chirun [Computer software]. Available at:
https://github.com/chirun-ncl/ [Accessed 1 March 2022].

Stagg, G. 2022. WebR [Computer software]. Available at: https://github.com/georgestagg/webR/
[Accessed 1 March 2022].

WebAssembly Community Group, 2022, WebAssembly System Interface [Computer software].
Available at: https://github.com/WebAssembly [Accessed 1 March 2022]

https://github.com/numbas/Numbas/
https://github.com/pyodide/pyodide
https://maths.mdx.ac.uk/wp-content/uploads/2019/09/2019-6-IMA.pdf
https://maths.mdx.ac.uk/wp-content/uploads/2019/09/2019-6-IMA.pdf
https://github.com/chirun-ncl/
https://github.com/georgestagg/webR/
https://github.com/WebAssembly

