

MSOR Connections 21(1) – journals.gre.ac.uk 29

RESOURCE REVIEW

Automatic Assessment of Mathematical Programming
Exercises with Numbas
Chris Graham, School of Mathematics, Statistics & Physics, Newcastle University, United Kingdom
Email: christopher.graham@ncl.ac.uk
George Stagg, School of Mathematics, Statistics & Physics, Newcastle University
Christian Lawson-Perfect, School of Mathematics, Statistics & Physics, Newcastle University
Aamir Khan, School of Mathematics, Statistics & Physics, Newcastle University

Abstract
As programming has become a common feature of undergraduate mathematics degrees, there has
been an increasing focus on how to teach and assess the subject to mathematicians. The potential
benefits of e-assessment of basic programming exercises have many parallels with assessment in
mathematics where e-assessment tools are widely used: the chance to give instant feedback to
students offers an opportunity to allow students to work at their own pace, accommodating the
disparate background in programming that often exists in undergraduate mathematics cohorts. And
the randomisation of question content not only offers a powerful tool for practice, with students able
to repeat similar problems over and over, it also can offer some protection against plagiarism in a
subject where, just like a solution to some mathematical problems, student answers to identical
problems are likely to be very similar. This paper considers an extension to Numbas to automatically
assess programming exercises and the successful implementation of the resource in undergraduate
modules using the programming languages R and Python.

Keywords: Assessment, E-Assessment, Programming, Coding, Computing, Numbas

1. Introduction
This paper considers the development of the Numbas e-assessment software to automatically mark
programming exercises using the R and Python programming languages, and its application to both
practice and summative assessment in two modules in the School of Mathematics, Statistics &
Physics at Newcastle University. Section 2 gives some background on the use of programming and
the motivation for automatically marking programming exercises. Section 3 describes the new
extension to Numbas and how programming questions make use of the well-established features of
the system. Section 4 gives more detail on how the new programming feature is used in
mathematical programming modules, including the format of assessments and feedback from
students.

2. Background
2.1 Computing in the mathematics curriculum

Modules dedicated to computer programming have been a compulsory component of the single-
honours mathematics degree programme at Newcastle University since 2015. The addition of
computing to the curriculum is in common with many other mathematics departments in the United
Kingdom (Sangwin, 2017), motivated by the increasing relevance of computers in mathematical
teaching and research, and in the future career prospects of undergraduate students.

At Newcastle University, students take dedicated computing modules at stages 1 and 2 of the
mathematics and physics programmes, focussing on R and Python, with computing embedded in
many modules later in the degree, such as Mathematical Biology and Big Data Analytics. At stage 1

mailto:christopher.graham@ncl.ac.uk

30 MSOR Connections 21(1) – journals.gre.ac.uk

of the mathematics programme, students take beginner courses in Python, with a focus on problem
solving, and in R, with a focus on statistics, before moving on to a module on numerical methods at
stage 2. Physics students follow a similar path, focussing purely on Python, following a move away
from MATLAB in 2020.

The increasing focus on embedding programming into the curriculum at Newcastle emphasises the
need to establish a solid foundation in the early stages of these programmes. Incoming students
typically present with very different experiences and competencies with programming and computer
skills in general. Some have formal qualifications, or have self-taught themselves one or more
programming languages. These students are likely to find some of the content straightforward and
effort is required to keep them engaged, though they typically still require a re-wiring of their
programming knowledge in the context of mathematics. Other students have no programming
experience or may even demonstrate high levels of anxiety about computing. Establishing a
foundation requires accommodation of these disparate backgrounds and the related consequence
that they work through teaching material at different rates.

For many years, the differing abilities of students has been most evident in practical sessions. The
programming modules follow a structure with a one-hour lecture, followed by a two-hour practical
each week, run by the module leader and a team of demonstrators. The lectures are used to
introduce theory and new ideas, and give worked examples, whilst the practicals offer the chance
for students to get hands-on with the programming language under supervision. This is a popular
format, with students citing that they particularly benefit from seeing the module leader work through
the process of sketching out algorithms, coding, de-bugging and enhancing solutions in the lecture
sessions.

The practical computer sessions follow a handout describing programming commands to try out,
with embedded exercises to complete as the handout progresses. Though students appreciate being
given the freedom to work through at their own pace, those struggling with the content will often rush
to the exercises and find it difficult to get started, often manifesting as very ‘low-level’ queries of the
form “How do I start?” or “What does this mean?”, which require little more than direction to the
relevant part of the handout. Others will side-step their completion of the exercises completely by
gathering in a small group around a friend who is more competent. Although a teamwork approach
is desirable, in this case the passive students often lose understanding and go off the trail of the
handout content as a result.

What we desire is for the exercises to be accessible to everyone in the class to complete individually,
and, although some of these issues can be solved with careful wording of the questions and hints,
there remains a fundamental question of how you give feedback to students. At a cohort level, the
timing of feedback is difficult: Solutions made available immediately can be counter-productive to
students completing the work; going through exercises with the class at intervals during the practical,
over a room’s A/V is often mentioned in a positive light by students, but is invariably not at the correct
time for most, who will either not have reached the relevant exercise, or have gone far beyond it;
and releasing solutions after a practical has finished is also of limited benefit, particularly if the
mastering of exercises is essential to progressing through the handout material. Automatic
assessment of these exercises affords the opportunity to give individual feedback at the correct pace
for the student, and to scaffold questions or offer a hint to those struggling.

Early efforts to introduce e-assessment gave moderate success using the Numbas e-assessment
system to indirectly mark exercises (Graham, 2020). Questions were presented to students to
complete in the programming software, before entering a numerical value to Numbas, which used
its own internal functionality to calculate a solution that could be compared to the student’s answer.

MSOR Connections 21(1) – journals.gre.ac.uk 31

Although this still has a place amongst questions asked in the new approach, it is limited by not being
able to directly assess code. The following sections build on that work to mark actual student code.

2.2 Motivation for e-assessment

Mathematical e-assessment systems, such as DEWIS (Gwynllyw and Henderson, 2009), Numbas
(Foster, et al, 2012) and STACK (Sangwin, 2015) are well established and can automatically mark
procedural mathematical exercises and give immediate feedback to the student. For such exercises,
it is possible to establish whether a student’s answer is correct, either through mathematical
equivalence (the same numerical value or expression as the correct answer) or based on its
properties (for example, is a root of a given equation).

A similar idea can be applied to programming exercises: though a student’s method of approaching
a problem may vary, just as in a mathematics problem, the expected outcome of their code is often
well-defined. Consider the following exercise:

Write a function is_prime that takes a natural number as input and
returns a boolean: True if the integer is prime, and otherwise False.

Consider a test applied after a student’s answer, for example, is_prime(13), which would return
the value True if the student’s code is correct. A similar test can be applied with several different
input values, sufficient to be satisfied that we can infer that the student’s code is correct or incorrect.

The approach of running individual “unit tests” on an answer in this way can offer a lot more than
this single point of feedback though, and the potential for running multiple tests on a student’s code
opens the door to rich, individual feedback. We might also ask any, or all, of the following:

• Does the student’s code run without errors?
• Does a function is_prime exist in the workspace?
• Does the function accept a single value as input?
• Does the function check if the input is a positive integer?
• Does the function return a single, boolean value?
• Does the function give the expected answer for some test input?
• Does the function treat special cases correctly, is_prime(1), for example?

Each of these can be verified with a single unit test and therefore each gives an opportunity to
contribute to the marking of the exercise, or to offer feedback to the student, or both.

The idea of automatically marking programming exercises is not new, particularly to the teaching of
computer science (Ala-Mutka 2005, Ihantola et al 2010). And in recent years, with the increased
emphasis on programming in undergraduate mathematics teaching, tools have been adopted by
some mathematics departments. These include Coderunner (Lobb and Harlow 2016), which has
been used in undergraduate teaching at the University of Coventry (Croft and England 2020) and on
a mathematics programme at University of Edinburgh (Sangwin 2019), and nbgrader (Blank et al
2019), which extends the functionality of Jupyter notebooks.

Whilst these pieces of software are relatively well established, we were motivated to extend the
functionality of the mathematical e-assessment software Numbas to accommodate the marking of
programming exercises, as described in the next section.

32 MSOR Connections 21(1) – journals.gre.ac.uk

3. The Numbas code extension
Fast-tracked by the global pandemic in 2020, efforts to extend Numbas to automatically mark
computer code have now developed into an official extension to Numbas.

3.1 Motivation for using Numbas

Whilst the software mentioned in section 2 may offer the functionality to mark and give feedback on
computer code, there are good reasons to develop the provision in Numbas itself.

Runs on the client: Numbas is able to run and assess Python and R code entirely in a web browser,
with no dependence on a server.

Familiar integration: Numbas is a system that is a familiar to students at Newcastle, used in almost
every other module of their studies at stages one and two. The implementation in Numbas means
that there is no need to introduce an unfamiliar interface. On a practical level, such assessments
can be deployed through the Numbas LTI tool, with no further installation, server requirements or
demand on the IT support teams at Newcastle.

Mixing mathematics and programming: Questions are often not exclusively based on
programming code – this might be a part of a larger question, or students might be asked to interpret
the output of their code. Using Numbas allows for marking code alongside other question types such
as number entry or multiple choice.

Access to the many other Numbas features: Perhaps the most powerful motivation for developing
an extension to Numbas was to take advantage the many features of the system that are already
established and well developed, and which the systems mentioned in section 2 do not offer. These
are discussed in depth in section 3.3 and include randomisation, scaffolding questions into steps,
alternative answers and adaptive marking.

3.2 How the Numbas code extension works

A Numbas extension provides new functionality or changes the behaviour of Numbas questions. The
functionality to mark code sits alongside extensions for statistical functions, interactive diagrams and
others, as an official extension developed by the team at Newcastle University.

When included in a question, the programming extension presents students a code input, which uses
the open-source Ace code editor ((Cloud9 and Mozilla, 2022), allowing syntax highlighting. Apart
from this new type of input, the question interface is familiar to students who have used Numbas
before, with a question prompt above the input, a submit button and an area for feedback and
marking notes.

The code input box can appear as an empty area for the student to enter their solution, or the
question author can give some initial content for the code box. This could be the structure of some
code outlined in comments to fill in, or the first part of a solution left to complete by the student. This
feature is also used to give students a full piece of code which contains one or more errors for the
student to fix, to build their ‘debugging' skills.

MSOR Connections 21(1) – journals.gre.ac.uk 33

Figure 1. A basic code part, which asks for the first element of a Python list. The
question is set up with a built-in validation test, to check if the Python code runs without
error, and then a single user-defined marking test, which checks the output against the
expected answer.

Early versions of the extension followed a similar process to the software cited in section 2: the
student’s code and a set of unit tests were sent to a server, to run the code and return the outcome
of the tests. Whilst this version was used extensively at Newcastle, the reliance on a server to carry
out the tasks makes it a risk, in terms of robustness (if the server gets into trouble and is no longer
able to respond to requests, then the assessment can no longer function), and limits the scalability
of the set up: the server can only support a limited number of simultaneous users. It also has another
significant disadvantage: the reliance on a server in Newcastle limited the ability to share the
extension and question content in the same way as other Numbas material, to the wider community
of teachers using Numbas.

In the new programming extension, code in R and Python is run in the web browser itself, with no
dependence on an external server. This is both desirable, in terms of speed and robustness, and is
in keeping with the Numbas project, which runs assessments entirely on the student’s device. The
code runners Pyodide (Pyodide contributors and Mozilla, 2019-2021) and WebR (Stagg, 2022) are
both built using WebAssembly (WebAssembly Community Group, 2022).. WebAssembly is a binary
instruction format compatible with most modern web browsers, allowing complex applications,
including interactive programming languages, to run in a web browser environment at near native
performance.

When the student’s code is submitted, the code runner of the appropriate language is loaded. The
student’s code is combined with other code defined by the question author:

• variable definitions, allowing the student’s answer to be marked according to randomisation
of a question, as specified by the question author.

• a preamble, to set up anything that needs to run before the student’s code, for example
variables or functions that they will use in their answer.

• a postamble, executed after the student’s answer, to set things up for the marking tests that
follow.

34 MSOR Connections 21(1) – journals.gre.ac.uk

• validation tests check that the student’s answer is valid, for example to reject an answer that
does not define a specific variable or function. These are run after a built-in validation test,
which checks whether the student’s code runs without error.

• Marking tests, which decide how much credit to give to the student.

The outcomes of the validation and marking tests feed into the Numbas marking algorithm, to apply
credit and give feedback to the student. Figure 1 illustrates a basic question using the programming
extension. The student receives immediate feedback on their work. They are also able to reveal a
correct answer to the question (this feature can be disabled for summative assessment), and a
worked solution or explanation can be provided.

3.3 How the code extension uses Numbas features

The functionality of accepting code, marking and presenting feedback is enhanced by a number of
features in Numbas which, even though originally designed for mathematics, have very clear
applications to programming exercises.

3.3.1 Alternative answers

The question presented in Figure 1 has a highly anticipated incorrect answer: students on our
programme study both Python and R, where the indexing of lists and arrays begins from 1, and not
0, as they do in Python. Numbas has an alternative answers feature, which can be used to catch,
optionally give credit, and provide feedback for specific answers that the author anticipates. In the
case of the question in Figure 1, Numbas can give feedback for the case where the student answer
retrieves the list element at index 1, as illustrated in Figure 2.

Figure 2. Alternative answer feedback provided for the anticipated incorrect answer to
the question in Figure 1, where a student enters seq[1] (correct for some other
programming languages, including R) instead of seq[0].

3.3.2 Scaffolding using ‘steps’ and ‘explore mode’

Whilst the alternative answers feature can help to give feedback on common errors, other Numbas
features assist students struggling to actually get started with a question. These features have been
used extensively in the formative material for the modules, including the handout exercises.

MSOR Connections 21(1) – journals.gre.ac.uk 35

The steps feature has been a part of Numbas since its inception, inherited from the CALM Project
for Computer Aided Learning in Mathematics (Beevers, 2003). Steps allow a basic hint to be
presented to the student, for example a reminder of the syntax to use for a particular programming
instruction, or of the relevant in-built function to use. Steps can also be used to scaffold a question
into smaller chunks, as illustrated in Figures 3a and 3b, for an example which calculates the sum of
a series of numbers through operations on numeric arrays. This is particularly useful for questions
which require a more substantial block of code to be entered by the student, giving the opportunity
to get feedback on each step.

Figure 3a. A question presented as a single answer box, with a Show steps button.
This sort of question would be typical of a handout exercise where students will often
struggle to get started answering the question. The steps offer an “in” to the student
and could take the form of a hint or individual answer boxes (Figure 3b).

Figure 3b. The steps in this question break the task down into individual one line
responses from the student. Each step is a fully-featured code question part which can
give feedback to the student using marking and validation tests, and utilise other
features such as alternative answers.

36 MSOR Connections 21(1) – journals.gre.ac.uk

A similar approach to scaffolding a question can be made using the explore mode feature of Numbas.
In this mode, Numbas presents individual parts of a question one at a time to the student, with
subsequent parts that can vary depending on the choices made by the student, or their interaction
with previous parts. By presenting a question in explore mode, students can be guided step-by-step
through a more substantial coding task. In Figure 4, an example is given of an object representing a
rectangle, constructed as a class in Python, in which the first part of the question asks the student
to make a basic class definition. After submitting that part, they can add more code to their question
in subsequent parts to add methods to calculate the rectangle’s area and perimeter, and to use their
class in a practical application. The question uses the variable replacement feature to include the
student’s code from the first part of the question as the placeholder for the second, and so on, so
that they can build up a solution.

Figure 4. A question on Python classes using explore mode in Numbas. In the first part,
the student is asked to create a basic definition of a class for a rectangle. Once they
have successfully completed this step, the second part (pictured) asks the student to
build on their existing code, adding a method to calculate the area. They can then later
move on to add more methods or use the class.

3.3.3 Randomisation

Randomisation is a key feature of mathematical e-assessment, whereby similar questions generated
using, for example, a different coefficient of an equation, or numeric value of a property can provide
substantial practice for students in a formative mode, or to provide students with different
assessment questions, encouraging students to work independently. These motivations are entirely
consistent for programming questions, particularly in the context of mathematics.

Randomisation could be different data to work with, or different equations to solve numerically, or
even the names of functions or variables. The randomisation of the question itself can make use of
the extensive functionality of Numbas, and is passed to the marking test that is applied to the
student’s code. Figure 5 illustrates a basic example.

MSOR Connections 21(1) – journals.gre.ac.uk 37

Figure 5. An example of a randomised question. The matrix is randomised to change
the values and locations on the diagonals. Different variants of the question can help to
reinforce the syntax of the function used to generate the matrix, or to give each student
a different version, whilst assessing the same learning outcomes in an equivalent way.

3.3.4 Other part types

Asking for code input is not always necessary or the most appropriate way to assess a programming
question. Sometimes a number entry box to accept the output of a computation is a good alternative.
In the example in Figure 6, the student is asked for the value of the best fit coefficients of a function,
fitted using a Python curve fitting function. In this case, as it is a handout exercise, there is no
pressing need to ensure that they have used Python to carry out the task, and by asking for the
numeric value it encourages the student to interpret the output of their code. In this case, this requires
the student to understand the output of the function, but this could also be critical analysis of whether
the code gives sensible values for their problem.

The question in Figure 6 cannot be easily randomised using standard Numbas functionality: it is not
practical for a question author to rewrite the algorithm used by the curve_fit function to identify
the expected answers. There is the option of a fixed question, with hard-coded data values and
answers, but the programming extension offers another more sophisticated option: as part of the
part’s marking algorithm, Numbas can invoke the code extensionprogramming extension to calculate
and set the correct numeric answers for the part, by providing it with the code for the correct answer.

In practice, in the application of the programming extension to our modules, many other part types
are mixed with the code input, including number entry, mathematical expressions, multiple choice
and parts which were marked offline.

38 MSOR Connections 21(1) – journals.gre.ac.uk

In [1]: opt.curve_fit(f, x, y)
Out[1]:
(array([-1.981337 , 0.78474439, -0.31518832]),
array([[9.57167127e-03, -1.09701508e-06, -1.01745329e-03],
 [-1.09701508e-06, 3.22775144e-04, 3.91115264e-07],
 [-1.01745329e-03, 3.91115264e-07, 3.23836523e-04]]))

Figure 6. A curve fitting question (top) which asks for numeric values of the best fit
coefficients of a given function, rather than the code to obtain them. The question
requires the student to interpret the output of the function (bottom), which is a Python
tuple, in which the first element is an array of the best fit coefficients, in an order
consistent with that specified in their user-defined function (the second value in the
tuple being a covariance matrix). Students must understand how the function
constructs its output, in order to interpret it and answer the question correctly. In this
case, marking the student’s code may not be the most approriate means of checking
their understanding.

4. Application to programming modules
Used throughout two modules in Python programming in the academic year 2021/22. 100% of
question content was delivered via Numbas, though not all assessed automatically.

4.1. Practical handouts

The original motivation for developing a code marking feature to Numbas was to offer feedback on
exercise questions in practical sessions. These exercises are embedded inside “virtual handouts”,
which have in recent years replaced physical handouts and are presented in a web-based format
using the Chirun software (Stagg et al, 2022). The format allows students to seamlessly move to an
exercise from the relevant handout content.

MSOR Connections 21(1) – journals.gre.ac.uk 39

Figure 7. A sample of a “virtual handout” used to deliver practical material. The
handouts mix theory, commands to try out, and exercises to complete.

Using the new Numbas extension, the handouts provide instant personalised feedback that students
can access at their own pace, with the opportunity to get a hint on a question that they cannot start
or break it down into more manageable steps. Whilst the move towards Numbas exercises
successfully allowed the modules to be delivered without practical sessions in the pandemic-affected
2020/21 academic year, the most noticeable impact has been on the running of practicals since the
return to in-person teaching, where students are more self-sufficient, reducing the low-level queries
for demonstrators and allowing them to focus on more meaningful conversations and focussed
assistance.

Feedback from students was obtained through two evaluations: the first four weeks into the
semester, to capture any early issues and suggestions, followed by a second at the end of the
module. In both cases, this took the form of qualitiative, free-text feedback. The format is popular
with students:

“The handouts strike a good balance between being accessible to the students who've
never used Python as well as challenging those who have had more practise. I like the
freedom of the practical sessions to work through the handout at your own pace.”

“The delivery of the material is interactive and something we can work through and
come back to if needs be.”

“I like that I can work through the handout so that I'm learning in the best way for
myself, at my own pace.”

40 MSOR Connections 21(1) – journals.gre.ac.uk

However, students commented that despite feedback and solutions being available in Numbas, they
still like seeing the module leader go through the solutions to handout exercises live, or in a video.

4.2 Practice material

Supplementing each week’s handout is a set of formative “Test Yourself” exercises available
throughout the semester. These are split into three groups of questions:

• ‘Warm up’ questions allow an easy route into the material. They might focus on some of the
key theory from the week’s content presented as questions to remove the coding element.
They sometimes involve simple tasks focussing on common errors: for example, students
are presented with complete code that contains an error and are asked to make a fix, such
that the code gives the expected outcome.

• A group of standard questions that are based on the week’s handout material. These were
designed to be comprehensive, covering the entire week of material even if questions
overlapped with the Numbas handout questions.

• ‘Bonus questions’ which offer an additional challenge for those who are excelling at the
module. These would usually stretch the material beyond the module content, or apply the
ideas to something completely left field, for example generating pixel art using the knowledge
gained from creating and manipulating 2D arrays.

Engagement with the “Test Yourself” practice material was lower than the practical handout
exercises, but very high for optional material, in comparison to other modules on the programme:
taking the stage 2 Python numerical methods module as an example, 76% of students tried the first
set of Test Yourself exercises, with a steady decline to 50% attempting the later sets, which were
perhaps superseded by the release of a mock exam.

4.3. Summative assessment

Each of the modules was structured into three assessments: the first was an assessment open for
an extended period, covering the foundations of the respective modules; the second a report-style
assessment; the third an off-campus class test. In all cases, assessments were open-book, so as to
be more authentic, since students will rarely be programming without access to resources.

A key aspect of the summative assessment was their hybrid format, where parts of some questions
presented in Numbas were not marked automatically, rather solutions were uploaded to our
institution’s VLE for human marking at a later date. These parts typically did not lend themselves to
online marking. For example, a question on curve fitting, such as that in Figure 6, might go on to ask
the student to plot the data and best fit curve. The presentation element of this part of the question
is difficult to mark automatically. Similarly, in the report-style assessment, students were asked to
upload their code, and feedback was given on the structure, the code efficiency and other aspects
such as the use of comments and appropriate variable names.

The hybrid format was very effective in allowing the marking time to be focussed where it is most
impactful, and the response from students in the evaluations was favourable:

"The feedback from our assignments was detailed and personal to us
and gave us information on what we did well and where we can improve."

MSOR Connections 21(1) – journals.gre.ac.uk 41

Another Numbas feature used extensively in the summative assessments was the re-marking
provision in the Numbas LTI tool, which manages student attempts. Since the introduction of
programming assessments is fairly new, it was often the case that alternative approaches, deserving
of credit, were identified on inspection of student attempts. The re-marking feature allows
assessment questions to be updated, in this case to add additional marking tests, before attempts
are bulk re-marked, ensuring fairness in marking across the cohort.

5. Future work
The academic year 2022/23 will see a full implementation of the latest client-side version of the
Numbas programming extension in our Python teaching, as well as an expansion of its use for R
teaching. A more substantial set of example programming questions is planned for the Numbas
Open Resource Library.

6. Resources
A demonstration of the Numbas programming extension is available at:
https://numbas.mathcentre.ac.uk/exam/26300/programming-extension-demo/preview/

7. References
Ala-Mutka, K.M., 2005. A survey of automated assessment approaches for programming
assignments. Computer science education, 15(2), pp.83-102.

Blank, D.S., Bourgin, D., Brown, A., Bussonnier, M., Frederic, J., Granger, B., Griffiths, T.L.,
Hamrick, J., Kelley, K., Pacer, M. and Page, L., 2019. nbgrader: A tool for creating and grading
assignments in the Jupyter Notebook. The Journal of Open Source Education, 2(11).

Beevers, C.E. and Paterson, J.S., 2003. Automatic assessment of problem-solving skills in
Mathematics. Active Learning in Higher Education, 4(2), pp.127-144.

Cloud9 and Mozilla. Ace - high performance code editor for the web [Computer software].
https://ace.c9.io/ [Accessed 1 March 2022].

Croft, D. and England, M., 2020, January. Computing with CodeRunner at Coventry University:
Automated summative assessment of Python and C++ code. In Proceedings of the 4th Conference
on Computing Education Practice 2020, pp. 1-4.

Foster, B., Perfect, C. and Youd, A., 2012. A completely client-side approach to e-assessment and
e-learning of mathematics and statistics. International Journal of e-Assessment, 2(2).

Graham, C., 2020. Assessment of computing in the mathematics curriculum using Numbas. MSOR
Connections, 18(2).

Gwynllyw, R. and Henderson, K., 2009, August. DEWIS-a computer aided assessment system for
mathematics and statistics. In CETL-MSOR Conference 2008.

Ihantola, P., Ahoniemi, T., Karavirta, V. and Seppälä, O., 2010, October. Review of recent systems
for automatic assessment of programming assignments. In Proceedings of the 10th Koli calling
international conference on computing education research, pp. 86-93.

Lobb, R. and Harlow, J., 2016. Coderunner: A tool for assessing computer programming skills.
ACM Inroads, 7(1), pp.47-51.

https://numbas.mathcentre.ac.uk/exam/26300/programming-extension-demo/preview/
https://ace.c9.io/

42 MSOR Connections 21(1) – journals.gre.ac.uk

Lawson-Perfect, C., Foster, W., Youd, A., Graham, C. and Stagg, G. 2021. Numbas (Version v6.0)
[Computer software]. Available at: https://github.com/numbas/Numbas/ [Accessed 1 March 2022].

Perfect, C., 2015. A demonstration of Numbas, an e-assessment system for mathematical
disciplines. In CAA Conference, pp. 1-8.

Pyodide contributors and Mozilla. 2019-2021. Pyodide (Version v0.19.1) [Computer software].
Available at: https://github.com/pyodide/pyodide [Accessed 1 March 2022].

Sangwin, C., 2015. Computer aided assessment of mathematics using STACK. In Selected regular
lectures from the 12th international congress on mathematical education, pp. 695-713. Springer,
Cham.

Sangwin, C.J. and O’Toole, C., 2017. Computer programming in the UK undergraduate
mathematics curriculum. International Journal of Mathematical Education in Science and
Technology, 48(8), pp.1133-1152.

Sangwin, C.J., 2019. Automatic assessment of students’ code using CodeRunner. IMA Higher
Education Teaching and Learning Series. https://maths.mdx.ac.uk/wp-
content/uploads/2019/09/2019-6-IMA.pdf [Accessed 1 March 2022]

Stagg, G., Graham C. and Lawson-Perfect, C., 2022, Chirun [Computer software]. Available at:
https://github.com/chirun-ncl/ [Accessed 1 March 2022].

Stagg, G. 2022. WebR [Computer software]. Available at: https://github.com/georgestagg/webR/
[Accessed 1 March 2022].

WebAssembly Community Group, 2022, WebAssembly System Interface [Computer software].
Available at: https://github.com/WebAssembly [Accessed 1 March 2022]

https://github.com/numbas/Numbas/
https://github.com/pyodide/pyodide
https://maths.mdx.ac.uk/wp-content/uploads/2019/09/2019-6-IMA.pdf
https://maths.mdx.ac.uk/wp-content/uploads/2019/09/2019-6-IMA.pdf
https://github.com/chirun-ncl/
https://github.com/georgestagg/webR/
https://github.com/WebAssembly

	Contents
	EDITORIAL
	OPINION
	Assessment as a barrier to inclusion
	1. Introduction
	2. Assessment in Mathematical Sciences
	3. Issues with assessment types
	4. Mitigations
	5. Conclusion
	6. Acknowledgements
	7. References
	WORKSHOP REPORT
	Collusion, Rackets, and Plagiarism in Assessments
	1. Introduction
	2. Forms of Assessment and Associated Malpractice
	1.
	2.
	2.1. The Essay/Report
	2.2. The Remote Examination
	2.3. Presentations
	2.4. Group work

	3. The Academic Malpractice Panel
	4. Next Steps?
	5. References
	CASE STUDY
	An Updated Show of Hands
	1. Introduction
	2. Implementation
	2.1. Class Setting
	2.2. Use of Technology
	2.3. Execution
	2.4. Results

	3. Discussion
	4. Aspects to Consider for Future Implementation
	5. References
	CASE STUDY
	Improving student engagement through employability themed group work
	1. Introduction
	2. Constructing assessment tasks within a fictional secondment
	3. Group work
	4. Digital story telling
	5. Evaluation
	6. Outlook
	7. References
	RESOURCE REVIEW
	Automatic Assessment of Mathematical Programming Exercises with Numbas
	1. Introduction
	2. Background
	2.1 Computing in the mathematics curriculum
	2.2 Motivation for e-assessment

	3. The Numbas code extension
	3.1 Motivation for using Numbas
	3.2 How the Numbas code extension works
	3.3 How the code extension uses Numbas features
	3.3.1 Alternative answers
	3.3.2 Scaffolding using ‘steps’ and ‘explore mode’
	3.3.3 Randomisation
	3.3.4 Other part types

	4. Application to programming modules
	4.1. Practical handouts
	4.2 Practice material
	4.3. Summative assessment

	5. Future work
	6. Resources
	7. References
	RESEARCH ARTICLE
	1. Introduction and Background
	2. Methodology
	2.1 CSE data collection
	2.2. CSE capture

	3. Results
	3.1. Case 1
	3.2. Case 2
	3.3. Case 3
	3.4. Case 4
	3.5. Case 5
	3.6. Case 6

	4. Resolution
	5. Discussion and Conclusion
	6. References
	RESEARCH ARTICLE
	“It’s so unfair” – Can we increase student perceptions of equity in the grading of group assessments by allowing them to declare a distribution of workload?
	1. Introduction
	2. Methods
	3. Results
	4. Discussion
	5. Acknowledgements
	6. References
	CASE STUDY
	Using online STACK assessment to teach complex analysis: a prototype course design?
	1. Introduction
	2. Course description and design
	3. Task design
	3.1 Lectures
	3.2 Workbooks

	4. Discussion and conclusions
	4.1 Student feedback and behaviour
	4.2 Workload involved in creating the workbooks
	4.3 Concluding remarks

	5. References
	CASE STUDY
	Adapting successful online activities for in-person classes - a new challenge
	1. Background
	2. The in-person flipped approach for 2021/22
	3. Evaluation
	4. Reflections on the future of in-person teaching
	5. References
	RESOURCE REVIEW

