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Abstract  

One of the goals of an undergraduate degree in mathematics is to transform students’ perceptions 

of mathematics from calculations with the rote application of formula to the reflective, creative 

problem-solving that is highly valued in academia and other professions. This can be achieved by 

incorporating authentic mathematical activities (i.e. the kind of tasks a maths graduate can expect in 

the workplace) into the design and delivery of undergraduate programmes. The Middlesex maths 

team have implemented a variety of novel teaching and learning methods into their specialist maths 

provision to achieve this aim. Our approach includes the use of generative artificial intelligence; 

extended, vague, problem-solving assignments; student choice in assessment; and reflective 

components. In this paper we discuss the implementation, benefits, and challenges of these 

authentic mathematical activities, focusing on their effect on students’ perceptions of mathematics 

during their studies. We use questionnaires to determine how students’ perceptions of mathematics 

change while doing these activities and their attitudes to the activities themselves. 

Keywords: Authentic assessment, attitudes, perceptions, identity, Mathematics Attitudes and 

Perceptions Survey, problem-solving, choice in assessment, artificial intelligence, reflection. 

1. Introduction 

Authentic assessment in higher education can be characterised as “assessment requiring students 

to use the same competencies, or combinations of knowledge, skills and attitudes that they need to 

apply… in professional life” (Gulikers, Bastiaens and Kirschner, 2004) and is a significant shift from 

traditional exam-based assessment, which is itself highly dissimilar to professional practice. In a 

systematic review Villarroel et al. (2018) conclude that authentic assessment has a positive impact 

on a variety of abilities related to employability, such as autonomy, motivation and self-regulation. 

Further, the authors distil authenticity into three dimensions: realism, cognitive challenge and 

evaluative judgement, and provide a framework for designing and operating authenticity assessment 

in higher education programmes. 

In professional life, mathematics graduates have a reputation for analytical thinking and problem-

solving that are particularly “sought after by employers” (QAA, 2023). One goal of authentic 

assessment in mathematics, therefore, is to ensure students explicitly develop these skills as part of 
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their mathematics undergraduate experience, which requires more from them than simply being able 

to perform well in controlled exam conditions. 

Authentic assessment has been a characteristic of Middlesex University mathematics degrees, with 

reflection, communication and problem-solving activities included in the degree programme when it 

relaunched in 2014 (Megeney 2016). The learning and teaching strategy for these programmes has 

been continually developed: all exams (high-stakes, controlled environment, end-of-module 

summative assessment) were removed in September 2021 (although some mid-module, low-stakes 

in-class tests remain) in favour of authentic assessment, which attempts to emulate the specialist 

work that mathematics graduates will perform in their professional roles. In Masterson et al. (2024) 

we distinguish between “authentic assessment”, whose outputs have professional analogues (such 

as reports, computer code, or presentations) and “authentic problems” whose inputs are typical of 

professional environments (for example vague, imprecise, or requiring a significant element of 

judgement to begin). 

In this paper, we examine the effects of authentic assessment on student attitudes and perceptions 

of mathematics. The premise is that if students are persistent and confident in mathematics, believe 

in its applicability to the real world, and are learning to develop understanding rather than just for 

completing tasks then they have expert-aligned attitudes that they can apply in professional life. We 

examine this relationship by deploying the Mathematical Attitudes and Perceptions Survey (MAPS) 

on undergraduate mathematics students whose degree programmes contain many authentic 

activities. 

In the next section we describe four categories of authentic activity (Problem-solving, Artificial 

intelligence, Reflection, and Choice in assessment) that are features of the Middlesex university 

undergraduate degree programmes (two further categories, Communication and Outreach are 

described in Jones et al. 2025). First, we introduce the MAPS survey tool. 

1.1. The Mathematics Attitudes and Perceptions Survey 

The Mathematics Attitudes and Perceptions Survey (MAPS) was developed by Code et al. (2016) to 

characterise undergraduate student perceptions of mathematics in educational settings. The survey 

consists of 32 statements which students respond to with a 5-point Likert scale (from “Strongly 

Disagree” to “Strongly Agree”). It contains seven subscales: Confidence (the perceived ability to 

successfully engage in mathematical tasks), Growth mindset (the belief that mathematical ability can 

be developed rather than an innate property), Real world (the view on the applicability of 

mathematics to everyday life), Persistence (the attitudes and approach when getting “stuck” on a 

problem), “Interest” (the motivation in studying mathematics), Sense making (learning mathematics 

for understanding, rather than for completing tasks), and Answers (on what form solutions to 

mathematical problems can take). The authors performed a factor analysis on a pool of specialist 

and non-specialist maths students in North American universities (𝑁 = 3411). The whole instrument 

achieved a Cronbach’s alpha of 0.87 (95% confidence interval [0.86, 0.88]). An expert consensus, 

determined from a panel of mathematics faculty at British Columbia University (𝑁 = 36), was 

obtained for 29 of the MAPS statements. The MAPS instrument therefore quantifies the extent to 

which undergraduates’ attitudes and perceptions of mathematics agrees with that of experts. 

In their initial study Code et al. (2016) found that students’ attitudes varied across courses, with first-

year Calculus 1 courses having students with lower MAPS scores (i.e. attitudes towards 

mathematics less aligned with those of experts) compared with students on a second-year 

Introduction to Proof course. They also reported a generally positive correlation between student 

grades and their MAPS scores. A further study by Maciejewski et al. (2021) demonstrated lower 
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MAPS scores for first-year students taking “development” maths courses (required, but non-credit 

bearing, courses for students entering university with low mathematics attainment) compared with 

first-year students taking “college-level” maths courses for credit. 

Of interest to the present work, Code at al. (2016) also examined students who completed the survey 

in both the September and April of their first academic year, reporting “All MAPS categories… saw 

declines over the academic year”, which is to say that students’ attitudes to mathematics moved 

further away from those of expert mathematicians during their first year at university. Further, this 

decline was present even for courses using “flipped” instructional methods (although the decline in 

the Real world, Persistence, Sense making and Answers categories weren’t statistically significant). 

The authors speculate that this is partially due to first-year courses’ emphasis on “solving low-level 

inauthentic problems”. A similar first-year decline in expert-aligned attitudes towards physics (using 

a related survey) is reported in Cahill et al. (2014). 

In contrast, Ozimek et al. (2024) report that amongst prelicensure nursing students, those 

undertaking a first-year Clinical Maths module designed with “problem solving in authentic situations” 

have greater MAPS scores compared with those who have yet to take the course. These results 

suggest that authenticity is an important element of maths courses that aim to develop students into 

expert mathematicians. 

2. Authentic activities 

2.1. Problem-solving 

The QAA (2023) recognise “the fundamental nature of MSOR as a problem-based subject area” and 

emphasise that graduates should have skills “in the solution of new problems arising in professional 

work or in further study”. Problem solving ability has traditionally been assessed in the second half 

of exam papers through applications of familiar theory to previously unseen, but perhaps not entirely 

unfamiliar problems. In our view this kind of problem solving is inauthentic for two reasons: first, 

mathematics professionals are more likely to identify or develop appropriate theory in response to 

specific problems, rather than look for applications of a particular theory. Second, problem solving 

in the professional domain involves a wide range of skills such as research, experimentation, 

collaboration and communication that cannot be assessed in controlled exam conditions. 

Since its inception, the Middlesex mathematics degree has included a core level 5 module (Year 2 

of an undergraduate degree in the UK), dedicated to developing the desirable problem-solving skills 

mentioned above (Jones and Megeney 2019, and Masterson et al. 2023). Following revalidation in 

2022, the module increasingly emphasises the “mathematization” (see Freudenthal 1968) of vague 

and imprecise problems rather than solving a problem already expressed mathematically. For 

example, the (space-themed) 2023-24 assessment consisted of 8 possible problems, including 

1. A solar powered satellite is on an elliptical orbit of the sun. Explore how much energy the 

satellite can generated per orbit and per hour. What capacity batteries should the satellite 

carry? 

2. Suppose an object is moving around randomly in space. Will it ever reach Earth? 

3. Celestial bodies tend to be approximately spherical. Can we measure how spherical they are 

in order to compare them? 

Small groups of students chose a problem to work on over an eight-week period with the brief that 

they are “primarily being assessed on the approach [they] take to solving problems, rather than the 

actual solution.” Indeed, only 10% of marks were allocated for the “solution” of the problem, with the 
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more marks available for an account of the “problem solving” process (10% for an introduction, 

mathematical formulation and strategy, and 30% for a thorough description of the problem-solving 

process, including which activities did and did not help the group make progress, together with an 

account of how the group interacted). At the start of the module, students learn problem-solving 

approaches such as Polya (1990), Mason et al. (2010) and Bransford and Stein (1993) to develop 

their problem-solving skills and give them the language and choice of frameworks to express and 

reflect on their process (Jones and Megeney, 2019 and Masterson et al., 2023). 

Vague, open-ended problem solving has also been incorporated into other modules such as level 5 

Mathematical Statistics, where students have an unconstrained choice of dataset to analyse and 

must identify an interesting question, choose an appropriate analysis to perform, and are given 

agency in demonstrating they have satisfied the learning objectives (Masterson et al. 2024). 

2.2. Artificial intelligence 

In November 2022 ubiquitous access to generative artificial intelligence began with the release of 

ChatGPT-3.5 by OpenAI. Universities recognised risks in this technology, particularly concerning 

ethical use, equality of access, and academic integrity but also opportunities in transforming learning 

experiences and increasing graduates’ employability and productivity through AI literacy (Russell 

Group, 2023). Responses have been mixed, with some courses returning to the pre-covid practice 

of controlled assessment conditions (such as exams), while others explicitly include the use of 

generative AI as an option or requirement in assessment. 

Whether AI can generate novel mathematical research remains to be seen. However, eminent 

researchers have recognised that potentially “it may only take one or two further iterations [for] the 

tool being of significant use in research level tasks” (Tao, 2024). It is important, therefore, for students 

to experience using generative AI tools in order to understand the capabilities, limitations, and 

appropriate uses of this technology for mathematical activities. In any case, following the reported 

productivity gains of using large language models for workplace tasks (Dell’Acqua et al. 2023), 

universities should prepare students for careers in which these technologies are widely used for 

knowledge work and decision-making. The think-tank Demos suggests that the challenge for 

universities in this setting is to “equip their graduates with skills, competencies and dispositions that 

will enable them to offer something different in the workplace” (Demos, 2023). 

In response, the Middlesex mathematics team have begun including generative AI into the syllabus 

and assessment of their mathematics programmes. The aim is that as students develop their 

mathematical and statistical knowledge they also develop the AI literacy to be judicious in its use, 

critical of its output and are able to articulate the value of their knowledge and skills in comparison 

to a naïve user of generative AI. 

In assessment for the level 5 Mathematical Statistics module, students first complete some data 

analysis questions then write a reflective report comparing their solutions to attempts made by a 

large language model (Masterson et al. 2024). In the final piece of assessment students will be 

invited to incorporate generative AI into their data analysis directly, but explicitly. 

Students are also permitted to use generative AI to support their extended written communication 

tasks in the level 5 module Problem-Solving and Communication. These briefs are centred on 

experiences that the students have had such as museum trips or guest lectures (Jones et al. 2025), 

and students are strongly encouraged to personalise their work and write from their own 

perspectives. Consequently, although students might use generative AI to help structure or redraft 

work, the content and the judgement of what to include, will be their own. 
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In the Problem-Solving and Communication syllabus, generative AI is also used to support students 

in producing high-quality mathematical animations using the manim library (see, for example, 

Sanderson 2024). Writing manim code requires a non-trivial understanding of object-oriented 

Python, which ordinarily has a significant learning curve. However, after a single two-hour workshop 

using generative AI to write manim code, students were able to produce high-quality animations of 

their own design, which they could optionally use as part of an assessment. 

2.3. Reflection 

Villarroel et al. (2018) identify evaluative judgement as an important dimension of authentic 

assessment. The aim is for students to “develop criteria and standards about what a good 

performance means” ultimately endowing the student with “the lifelong capacity to assess and 

regulate their learning and performance”, which will enhance their employability. 

At Middlesex university, evaluative judgement is developed in reflection activities that are embedded 

throughout the mathematics programmes. In the level 4 (Year 1 of an undergraduate degree in the 

UK) module Data and Information, students reflect on their participation in outreach activities (such 

as SMASHfest see Griffiths and Keith 2021, Jones et al. 2025 and Megeney 2016). These reflections 

focus primarily on their experience of interacting with staff, fellow students and the public, and how 

these experiences may benefit their mathematics education. 

At level 5 (Year 2 of an undergraduate degree in the UK), the module Problem-Solving and 

Communication is assessed through group problem-solving (discussed in Section 2.1) and a portfolio 

of communication briefs (Jones et al. 2025). Students also submit a written reflection on their 

assessment (worth 15% of their overall grade) that requires them to comment on their group 

dynamics, evidence their improvement as problem-solvers, and critically evaluate both their 

submitted communication briefs and the process they followed to produce them. At this level, 

students are given a structured set of prompts to support a high-quality reflection. Students are asked 

to consider the knowledge and skills (including time management) that they have used; to identify 

particular challenges; to justify their approach; to explain how they engaged with formative feedback; 

and describe what could be improved or would be done differently in the future. These reflective 

questions have natural synergies with problem-solving assessment as Polya’s (1990) fourth step is 

“looking back”, where students focus on checking the result and argument, and seeing if the result 

can be derived differently, or is now immediately clear from the student’s new point of view. 

At level 6 (Final year of an undergraduate degree in the UK), reflective tasks are present but are less 

explicitly structured so that students can take ownership of this process. The Project module, for 

example, requires students to keep a reflective diary of meetings with their supervisor, but only gives 

minimal guidance on the contents. The module Real and Complex Analysis builds on the students’ 

reflective ability by including evaluative judgements of their peer’s work. 

2.4. Choice in assessment 

Student engagement in learning can be improved by granting a degree of agency over their 

assessment as “flexibility in assessment allows students to take a proactive role in their learning” 

(Pretorius, van Mourik and Barratt, 2017). The Middlesex maths team have incorporated student 

choice into assessment in two distinct ways: first, we allow students to select the format of their 

submission, which could be written, drawn, audio recorded, or video recorded, or a combination of 

these formats for an individual piece of coursework. This choice of format was present in the level 5 

Problem-Solving and Communication module, as well as more mathematically technical modules 
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such as the level 6 Real and Complex Analysis where, for example, students choose the format of 

their proof that multivariable polynomials are differentiable. 

Student choice of assessment format is facilitated in part by the three-year loan of iPads to all 

undergraduate maths students (Jones, Megeney and Sharples 2022), which provides a common, 

equitable platform for multi-media submissions. Students may wish to choose the format that they 

believe best demonstrates their mathematical ability or take the opportunity to develop their skill and 

confidence in other formats. Including this wide choice made the assessment more accessible, 

reducing the need for reasonable adjustments and improving the inclusivity of the modules. 

Second, in many module assessments students have a substantive choice over the question they 

answer (Masterson et al. 2024). This includes a free choice of dataset and method of analysis in the 

level 5 Mathematical Statistics module (with some guidance on the learning outcomes expected to 

be demonstrated, such as the calculation and interpretation of confidence intervals), and a choice of 

vague problem for group work in level 5 Problem-Solving and Communication (see Section 2.1).  

These significant choices in assessment require students to have a good overview of the subject 

and to be able to make sound judgements on their overall approach to a task, which are desirable 

features for graduate mathematicians. However, there is a risk that students make unsuitable 

choices, for example on a topic that is particularly challenging to communicate in an audio-only 

format, such as geometry, or a dataset that isn’t suited to the learning outcomes, for example 

categorical data for the calculation of confidence intervals. However, formative submissions, and 

frequent check-ins serve as opportunities to guide students’ judgement and reinforce their learning 

to correct any such errors before summative submission. 

3. Methodology 

We conducted an anonymous survey between July and August of 2024 of current students and 

recent graduates of our undergraduate mathematics programmes BSc Mathematics, BSc 

Mathematics with Computing, and BSc Mathematics and Data Science. The survey was adapted 

from the MAPS in the following way: for brevity the three statements in the Interest subcategory and 

the two uncategorised statements were removed. Our rationale for this decision was that the MAPS 

was designed for undergraduates taking general maths modules, whereas students who had chosen 

to study specialist mathematics degrees had an established interest in mathematics. We also 

introduced the statement “I am a mathematician” to explore students’ feelings of mathematical 

identity, giving a total of 28 statements. 

In the survey, participants were first asked to recall how they felt about mathematics before joining 

Middlesex University and record their recollection through rating their agreement with the MAPS and 

identity statements. Next, for each of the six learning and teaching elements Problem-solving, 

Artificial intelligence, Reflection, Choice in assessment, Communication, and Outreach participants 

were asked whether they’d encountered this element: an affirmative response gave four additional 

statements “[element] made me more confident in mathematics”, “[element] increased my anxiety”, 

“[element] helped me prepare for my professional career” and “[element] is an important part of 

mathematics”, and a free-text response about their experience of this element. Finally, participants 

were given the MAPS and identity statements a second time to rate how they currently felt. The 

survey and research methodology were approved by the Middlesex University ethics committee ref: 

28902. 
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Participants rated each statement on the scale Strongly disagree, Disagree, Neither agree nor 

disagree, Agree, and Strongly agree. Our analysis differs from that of Code et al. (2016) who 

dichotomise responses into scoring one point if the direction of the participants response (agree or 

disagree) matches that of the expert consensus, and zero points otherwise. This gives an easily 

interpretable “consensuality” measure similar to the common positivity measure used for Likert data 

(Jeong and Lee, 2016), which is statistically robust as it models agreement with each statement as 

a Bernoulli random variable. 

Instead, to also capture the strength of agreement, we score from -2 (Strongly disagree) to 2 

(Strongly agree) before multiplying by -1 if necessary to align the scale with the direction of the expert 

consensus for that statement. We then calculate an average score for each participant, question 

category and time. This “intervalist” analysis of Likert data is regarded as statistically robust (Carifio 

and Perla, 2008, Norman 2010, Sullivan and Artino, 2013) although there has been substantial 

debate about the appropriate analysis of attitude survey data since Likert (1932) introduced his 

eponymous methodology. An advantage of the approach taken here is that small changes in 

response (for example from Agree to Strongly agree, or from Neither agree nor disagree to Disagree) 

are captured in the average scores. We report summary statistics across these averages in the next 

section. 

The non-MAPS statement “I am a mathematician” and the statements about the six specific teaching 

and learning elements do not have an established expert consensus, so are simply scored from -2 

(Strongly disagree) to 2 (Strong agree), with the exception of “[element] increased my anxiety” for 

which this scale is reversed. Consequently, we report data so that positive scores for MAPS 

statements indicate alignment with the expert consensus, and positive scores for other statements 

have a positive connotation (more confidence, less anxiety, etc.). 

As the survey was administered at a single time point our methodology isn’t a true pre/post study to 

measure change in attitudes, which is a limitation of the design. Participants may be biased in their 

recollection of pre-university attitudes, perhaps by judging prior attitudes more harshly in light of their 

current mathematical experience. Our “quasi-pre/post” design, however, does capture the extent to 

which participants currently perceive how their attitudes have changed since before joining 

university. 

Data analysis was performed in the R programming language and the code is available in Sharples 

(2025). In this paper we report on the MAPS and identity statements, and participant perceptions 

about Problem-solving, Artificial intelligence, Reflection, and Choice in assessment. For discussion 

and results on the Communication and Outreach activities see Jones et al. (2025). 

4. Results 

A total of 𝑁 = 13 surveys were completed. Participants reported having joined the university between 

2014 and 2021 so cover a wide range of the Middlesex mathematics provision. We also include the 

results from an additional participant who completed only the first half of the survey. All other surveys 

were fully completed apart from one missing response for question 6 at the “before university” time 

point. 

4.1. MAPS and identity 

Overall results are summarised in Table 1: we see that, on average, participants’ attitudes before 

joining university to study a specialist mathematics undergraduate degree mildly align with the expert 

consensus (mean score of 0.554), but there is an improvement in their attitudes after completing at 
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least some undergraduate study (mean score of 0.899). Further, before university the least expert-

like participant disagreed with the expert consensus overall (mean score of -0.24), but after some 

undergraduate study all students agreed with the consensus overall (minimum mean score of 0.423). 

There was a substantial shift in the attitudes about mathematical identity. Recollecting their attitudes 

before joining an undergraduate mathematics degree, of the 14 participants 6 agreed and 4 strongly 

agreed with the statement that they were mathematicians. At the time of the survey this improved to 

5 agreeing and 8 strongly agreeing out of 13 respondents. The average Likert scores can be seen 

in Table 1. 

Table 1: Likert scores comparing the recollection of attitudes before university (pre) and 

attitudes at the time of completing the survey (post). Minimum and maximum are taken 

across the average scores for each participant. 

Questions Time n Mean Likert score sd Min Max 

MAPS subset pre 14 0.554 0.443 -0.24 1.08 

MAPS subset post 13 0.899 0.375 0.423 1.69 

Identity pre 14 0.857 1.03 -1 2 

Identity post 13 1.62 0.506 1 2 

Results for individual question categories can be seen in Figure 1. For each category there was a 

closer alignment of attitudes to the expert consensus following some undergraduate study, 

particularly in the Persistence (+0.49), Confidence (+0.47), and Answers (+0.43) categories. 

 

Figure 1: Comparison of students’ attitudes aggregated by MAPS category (positive scores show 

agreement with the expert consensus) with an additional question on mathematical identity. 



108 MSOR Connections 23(3) – journals.gre.ac.uk 

 

4.2. Attitudes to teaching and learning elements 

In general, respondents had positive attitudes about the use of Artificial intelligence, Choice in 

assessment, Problem-solving, and Reflection in their degree programmes (see Table 2). There was 

substantial agreement that all these teaching elements improved respondent confidence, and that 

they are important to mathematics. Further, respondents substantially agreed that Problem-solving 

helped prepare them for careers, but felt less strongly that the other teaching elements supported 

this outcome. Respondents agreed that Problem-solving and Choice in assessment didn’t increase 

anxiety, but were more ambivalent about anxiety from the Artificial intelligence and Reflection 

elements. 

Table 2: Likert scores of respondent attitudes to selected teaching and learning elements. 

Element Statement n 
Mean Likert 

score 
sd 

Artificial intelligence Improved confidence 4 1.25 0.5 

Artificial intelligence Important to mathematics 4 1.75 0.5 

Artificial intelligence Career preparation 4 0.75 1.26 

Artificial intelligence (didn’t) increase anxiety. 4 0.25 1.5 

Choice in assessment Improved confidence 14 1.29 0.73 

Choice in assessment Important to mathematics 14 1.21 0.70 

Choice in assessment Career preparation 14 0.50 1.09 

Choice in assessment (didn’t) increase anxiety. 14 1.29 0.61 

Problem-solving Improved confidence 14 1.71 0.47 

Problem-solving Important to mathematics 14 1.86 0.36 

Problem-solving Career preparation 14 1.5 0.85 

Problem-solving (didn’t) increase anxiety. 14 1.21 0.89 

Reflection Improved confidence 11 1.45 0.52 

Reflection Important to mathematics 11 1.18 1.17 

Reflection Career preparation 11 0.91 1.04 

Reflection (didn’t) increase anxiety. 11 0.64 1.36 
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Looking at the individual responses in Figure 2, we note that attitudes to Problem-solving were 

generally positive, while attitudes to Choice in assessment were mainly positive and neutral, whereas 

both Artificial intelligence and Reflection polarised respondents. In particular, some students stated 

that the use of Artificial intelligence and Reflection increased their anxiety and that Reflection, Choice 

in assessment, and Artificial intelligence didn’t help prepare them for their careers. 

 

Figure 2: Comparison of attitudes to selected teaching and learning elements. Each point 

represents an individual respondent’s Likert rating. Points are jittered to prevent 

overplotting. 

 

Respondents who left free text comments were positive about the teaching elements. They reported 

benefits to individual approaches to learning as Choice in assessment “allowed me to properly 

understand my capabilities and plan my studying accordingly” and “is helpful as we all have different 

ways of learning and interests”. 

Benefits to learning outcomes were also reported as Problem-solving “requires time and 

development [but]… leads to students thinking independently” and “allowed me to think more outside 

of the box when it came to answering questions”, while Choice in assessment “helps [in learning] 

more about a specific approach to a problem” and Reflection “is an important part of mathematics 

learning… [that leads to] improvement in the area [reflected upon]”. 

Further, the free text comments were used to express appreciation with respondents “grateful to 

have had” Choice in assessment and reporting that they “Loved the problem-solving module!”. 

Respondents also gave suggestions for future developments reporting that Choice in assessment 

would “give students more flexibility and time management” and that Artificial intelligence “should be 

explored and used by future undergraduate students and lecturers… [It] can revolutionize the 

education of mathematics”. 
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5. Discussion and future work 

The Middlesex university mathematics degree programmes have been designed with authentic 

activities embedded throughout, to develop graduate skills and therefore employability in students 

(Megeney 2016). Students on these programmes report that their attitudes to mathematics have 

substantially shifted towards those of experts, compared to the recollection of their pre-university 

attitudes. Although we didn’t take an objective measure of the student’s attitudes at the start of their 

course, at least at the time of the survey the students believed that they had become more expert-

like in their attitudes. 

It is plausible that the inclusion of authentic activities is at least partially responsible for the expert-

alignment of students’ attitudes for two reasons: first, the students themselves generally report that 

these activities improved their confidence, helped them prepare for their careers, and are important 

parts of mathematics. Second, other studies using the MAPS show attitudes becoming less expert-

like in both traditional and flipped classroom mathematics courses with assessment “depending 

largely on traditional written exams in all cases” (Code et al., 2016). This is perhaps suggestive that 

inauthentic exams have a detrimental effect on student’s mathematics attitudes, which is in line with 

the known negative effects of exams in higher education in general (French, Dickerson and Mulder, 

2023). 

A larger scale study, with pre and post MAPS measures, across multiple universities with differing 

maths provisions would be necessary to robustly establish if the inclusion of authentic activities such 

as those described above has a significant effect on student attitudes. However, the impact of this 

work is potentially very high as these attitudes include those that employers recognise as being 

particularly sought after in graduates. 

Generative AI activities are a recent inclusion in the programmes, which accounts for the lower 

number of respondents (𝑛 = 4). It’s clear that some students are anxious about its use and don’t feel 

that the inclusion of AI activities (at least in their current form) have helped prepare them for their 

careers, so the risks and affordances of this technology in mathematics programmes will need to be 

carefully considered. However, there is significant potential in graduate skill development, as 

illustrated in the manim example discussed in Section 2.2: here generative AI can support 

mathematics graduates in education and communication roles to produce high-quality materials 

without the need for extensive, specific technical training that is otherwise beyond the scope of their 

curriculum. Including some examples of the appropriate use of generative AI in course design has 

the potential to produce technological agile graduates who can rapidly learn new skills. 

A small number of respondents seemed to have a negative view of the reflective activities. Villarroel 

et al. (2018) argue that “students need to be exposed to a variety of [formative] tasks with diverse 

performance requirements” to develop evaluative judgement, which is perhaps in tension with giving 

students choice in assessment. Some students, perhaps those with less confidence, may choose a 

smaller range of familiar assessment formats and question types, giving themselves less opportunity 

to develop judgement through reflection. A whole programme approach could therefore be 

necessary to ensure that for any given assessment students have agency, but also experience a 

variety of tasks and performance requirements across their whole programme.  
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