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Abstract  

The development of the Poisson match as a model used in the prediction of the outcome of football 

matches is described. In this context, many interesting modelling projects arise that are suitable for 

undergraduate, final year students. In a narrative that discusses the author’s engagement with this 

model and other related models, the paper presents a number of these projects, their attractions 

and their pitfalls, and poses a number of questions that are suitable for investigation. The answers 

to some of these questions would be worthy of the attention of the administrators of their 

respective sports.  

Keywords: Poisson distribution; sport; competitive balance; tournament design. 

1. Background 

This paper is a personal story as well as a description of some mathematics. I first met the 

“Poisson match” in 1983 as a Mathematics undergraduate at Sheffield University. On a project-

based module, students read and summarised papers on sports statistics, among which was the 

now seminal work of Mike Maher on modelling football scores (Maher, 1982). This was the start of 

more than thirty years of interaction with this model. A few years later, in a final year project that I 

set as a young lecturer in the early 1990s, two final year mathematics students forecast football 

match scores using this model in order to play the Football Pools. The ‘Pools’ was a forerunner to 

the National Lottery. Millionaires who had correctly forecast eight score draws were front page 

celebrities. In the simplest stake in this game, a player selected eight matches from among all the 

matches to be played in the English Football League on a given weekend, earning 3 points if the 

result of a selected match was a score-draw, 2 for a no-score-draw, 1½ for an away win, and 1 

point for a home win. Those who scored 24 points shared the jackpot. So, the object was to 

forecast match scores, and then make the selection on the basis of these forecasts.  

Selecting 8 matches at random achieved 14 points on average, and using Maher’s model we could 

improve this to 17, reducing the expected waiting time for a jackpout from 107 plays to 106 

approximately. There are three problems. Firstly, football match scores are inherently difficult to 

forecast because games are often finely balanced, and arguably more so than any other game. 

This is one reason why the game is so popular (Forrest and Simmons, 2002; Buraimo and 

Simmons, 2015), and I will return to this point later. The second problem is shortcomings in the 

model itself, and indeed Maher’s model has been developed and refined by many. The third 

problem is sparcity of data, so that parameters are not sufficiently well estimated.  

To explain this last point, we must describe the Maher model in a little detail. Doing so also 

suggests many open questions that are suitable for student projects. It is immediately apparent 

that the score of a team A in a match M is a random variable taking values 0,1,2,.., and therefore 

the Poisson distribution is a candidate model for this score. To use this model, the mean score (the 
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parameter of the Poisson distribution) must be estimated. Now obviously, when A plays team B at 

venue C at time t say, this is a random trial that has never been observed before. Even if A played 

B at venue C in the previous season, conditions would be different, the teams would be different, a 

different referee, weather, etc. So what data should we use? Ignoring the issues just raised and 

assuming all matches AvB at C are statistically identical (and independent), we could use the 

scores from all the matches AvB at C in the recent seasons. However, this would still give only a 

small number of datapoints, bearing in mind that the further one goes back in time the more 

dubious are the assumptions, not least because the abilities or strengths of A and B evolve over 

time. In fact if one proceeds in this naïve way, for the English Premier League (EPL) now with 

twenty teams, this approach implies 380 parameters to be estimated. Further, one season’s data is 

itself 380 matches. Maher’s trick was to propose that each team possesses an attacking strength 

(or tendency to score goals) and a defensive weakness (or tendency to concede goals), and the 

mean score of A when A plays B is the product of A’s attacking strength, 1 , and B’s defensive 

weakness, 2 , and a home advantage parameter,   say, which does not depend on the venue. 

Thus, if 1X  is the random variable that denotes the score of A when A plays B at home, and 2X  is 

the score of B in this match, then 1 1 2E( )X     (and 2 2 1E( )X   ), and 1X  and 2X  have 

independent Poisson distributions. With this model, there are two parameters per team, plus the 

home advantage, making 41 in total for the EPL (actually only 40 because strength is relative). 

Nonetheless, estimation remains a problem because teams’ strengths evolve over time—some 

teams improve, others decline. Owen (2011) and Koopman and Lit (2015) model this strength 

evolution. McHale and Kharrat (BBC Sport, 2017) take a different approach, using player line-ups 

to determine the strengths. The independence of scores is questioned by Dixon and Coles (1998), 

although McHale and Scarf (2007, 2011) found only slight negative dependence. Now I may be 

digressing slightly here, but it is important to depict the modelling landscape in order to develop 

ideas for further related projects. 

Returning to my own relationship with the Maher model, a decisive moment was the opportunity to 

develop the statistical model that underlies the EA Sports Player Performance Index, which is 

described in McHale et al. (2012). This fortunate event rekindled my work in this area, and further 

student projects and some publications followed, connected with tournament design (Scarf et al., 

2009), cricket (Scarf et al., 2011) and my own passion for mountain running and orienteering 

(Scarf, 2007). My latest work concerns the question of competitive balance in rugby union, which 

also uses the Poisson distribution as its basis.  

So where is this narrative leading and what has it to do with final year projects for undergraduates? 

Well, my first point is that the sports industry wants analysts (Brady et al., 2017), not least to repeat 

the ‘Moneyball’ success (Lewis, 2003). My second is that sport provides interesting projects, for 

which data are widely available and easily collected. The third is that sport gives students the 

opportunity for the application of modelling to the real world (Porter and Bartholomew, 2016). The 

fourth is that while developments of Maher’s model are too difficult for undergraduate projects, 

many simpler, related questions remain, and arise contemporaneously. Indeed, in the next section, 

in which I describe open questions that would make suitable projects, I begin with the recent 

decision of FIFA to extend the soccer World Cup finals. The open questions are presented as 

something of a list, organised around broad headings, with some discussion of how they might be 

tackled, and what technical issues may arise and how they can be avoided. The paper finishes 

with the rugby union question. I hope this list will provide useful inspiration for teachers of 

undergraduates. I am not aware of a work that has set out to classify projects in this way. 
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2. Open questions and projects 

2.1. Tournament design 

FIFA has announced that the World Cup finals in 2026 will comprise 48 teams rather than 32. The 

immediate question is what effect this will have on the tournament. Obviously it will be larger (more 

matches), but what will be the effect on its competitiveness? A rather simple argument is that there 

will be none because the strength of the teams ranked, during the qualification stage, between 33rd 

and 48th in the world are only very marginally weaker than those ranked say 17th to 32nd. Actually, 

one can speculate that a greater proportion of matches in the tournament as a whole will be more 

balanced. What will be the effect on the tournament outcome? The simplest way to study this is to 

calculate the probability that the best team wins using simulation. A final year project might take 

the form: ‘Use simulation to study the effect on the probability that the best team wins of increasing 

the tournament size from 32 to 48’. Another interesting question is: ‘How does the number of 

unimportant matches vary with the size of the tournament?’ A match is deemed unimportant if its 

outcome has no effect on the tournament outcome, e.g. in a group stage a match between teams 

who are already eliminated. To tackle these questions, the Maher model can be used to simulate 

individual matches, using either team strengths that are estimated by the investigator using data 

collected by the investigator (a more difficult variation of the project) or team strengths that have 

been reported by others in published work and that are assumed typical of the tournament studied 

(a less difficult variation of the project). In the less difficult project, the investigator might assume 

that team strengths of additional teams are the same as those ranked 17 to 32, for example. Or 

existing ranking lists might be used to modify strengths slightly. In both variations, it is necessary to 

code: assignment of teams to groups and matches, match outcomes between known teams; 

progression of teams to knockout stages; match outcomes decided following a tie at full-time (a 

‘coin-toss’ simplest); and repetitions of the complete tournament. 

Many variations on this project are then possible: ‘Investigate different forms of tournament for the 

soccer World Cup finals’. Here, different combinations of group sizes, number of group rounds, and 

number of knockout rounds can be investigated. Other projects can look at variation in rules for 

seeding, ‘Investigate the effect of different seeding procedures on the probability that the best team 

wins’. Interesting questions relate to the UEFA Champions League: its pre-tournament qualification 

rounds; and the appropriate number of qualifying teams from each national league. These are 

timely questions because sports administrators continue to fiddle with tournament design. 

Reproduction of the results of Maher (1982) would make a starting point for a more demanding 

project that attempts to investigate developments of the Maher model and its estimation. Other 

sports tournaments, in e.g. cricket, rugby union, tennis, can be investigated using the model of 

Bradley and Terry (1952). Within this theme softer projects are possible, for example: ‘Carry out a 

comparative study of tournament design across European football leagues’; ‘Discuss the relative 

merits of the different designs that have been used in the cricket World Cup’. 

2.2. Rule Changes 

Studies of tournament design changes are similar in scope to studies of changes to scoring 

systems. Thus one might set a project to: ‘Study the effect of changes in the scoring system in 

badminton’, focusing on the scoring rules before and after 2006, when scoring only on serve 

changed to scoring regardless of serve, and games from first to 15 to first to 21. It turns out that 

this question has been studied by (Percy, 2009). However, a large number of variations on this 

theme in any one of a number of sports are possible. The investigator might even propose a 

favourite sport to investigate in what-if analysis. Such studies require a simple model for winning a 



 

64  MSOR Connections 15(3) – journals.gre.ac.uk 

 

point, on serve and against serve. A Bernoulli trial with a different win probability in each case will 

do. Tennis, with its archaic scoring system, could be investigated: ‘Is serve dominance the 

determining factor in game length?’ This study could contrast tennis, where games are short (to 4) 

and many (>12), with badminton, where games are long (to 21) and few (3). 

2.3. Score distributions and dependency 

In football, scores are almost independent. ‘In basketball, what is the nature of score dependency?’ 

Possession changes and high scoring rates suggest strong dependency, but this may not be true. 

One could ‘Classify team ball sports by score dependency’, by collecting scores in high profile 

tournaments for each sport, calculating correlations between scores, and then attempting to relate 

these to the nature of the sports and perhaps even their popularity. In sports with many different 

means of scoring points (e.g. variations of football), one has to determine whether to focus on 

points or numbers of scoring events. One might ‘Investigate dependency between scoring types in 

sports with multiple scoring modes’. For example, in rugby union, is the number of tries correlated 

with the number of penalties? The “Poissoness” of scores might be investigated: ‘Investigate in 

sport S the nature of the distribution of scores’. 

2.4. Competitive balance 

The final questions that I consider are presented in a little more detail, and investigate the 

relationship between outcome uncertainty and scoring rate. They originate from three questions 

that may themselves be posed in projects: ‘What are the essential characteristics of a popular 

sport?’; ‘Why is football (soccer) so popular worldwide?’; and ‘Is rugby union becoming increasingly 

uncompetitive?’. The first two questions here are rather broad. Consequently, they offer 

possibilities for more or less technical solutions. A softer study might carry out a survey using a 

questionnaire. A more technical project might relate competitiveness to measures that are 

surrogates for popularity. In the latter, one requires a measure of competitiveness. Many have 

been proposed in the sports economics literature (e.g. Utt and Fort, 2002). Here the terms 

competitiveness, competitive balance, and uncertainty of outcome are used interchangeably.  

It is my own conjecture that rugby union is becoming less competitive. If this is true, it is natural to 

ask ‘Why?’ Stepping away from a real sport for a moment, let us construct a mathematical sport in 

which scores follow independent Poisson distributions, and investigate the relation between 

competitive balance and scoring rate. Let us call such a game a “pure Poisson match” and 

investigate the question: ‘In a pure Poisson match, what is the relationship between team 

strengths, scoring rates and uncertainty of outcome?’  

To develop this idea a little further, we need some preliminaries. Let Y  be a random variable. Then 

for any 0t  , Pr( 0) Pr( 1) ( )tY tYY e E e     by Markov’s inequality (since 
tYe  is a non-negative 

random variable). Now let 1 2Y X X    where 1X  and 2X  are independent. Then  

1 2 1 2( )
1 2Pr( 0) ( ) ( ) ( )

t X X tX tX
X X E e E e E e

 
    .                                   (1) 

Now suppose 1 1~ Po( )X 
 
and 2 2~ Po( )X   independent, so that 1 2( , )X X  is a pure Poisson match. 

The moment generating function of iX  is given by ( ) exp{ ( 1)}isX s
iE e e  . Therefore from (1) we 

obtain  

1 2 1 2Pr( 0) exp{ ( 1) ( 1)}t tX X e e        . 

Now setting 2 1log( / )t   , we obtain 
2

1 2 1 2 1 2 1 2 1 2Pr( 0) exp{ ( / 1) ( / 1)} exp{ ( ) }.X X                  
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Now let 1 
 
and 2   for some 1  , so that team 2 is slightly stronger than team 1. Then 

we have that 2
1 2Pr( ) exp{ (1 ) } 0X X      

 
as  

 
for fixed  . Therefore 1 2Pr( ) 1X X 

 
as  

 
for fixed  . Therefore, in a pure Poisson match, no matter how close are the strengths 

of the two teams, in the limit (for a very large scoring rate) the stronger team will always win and 

the match is perfectly competitively unbalanced. Further, if 1 2   
 
then 1 2Pr( ) 0X X 

 
as 

   (proof omitted) and 1
1 2 1 2 2Pr( ) Pr( )X X X X     as    (by symmetry). A technical 

project might ask for proofs of these results.  

The above deals with the asymptotic behaviour of 1 2Pr( )X X . For the exact calculation of 

1 2Pr( )X X  for 1 ~ Po( )X   and 2 ~ Po( )X   we can use 

1

1 2 1 0
Pr( ) { / !}{ ( ) / !}

y x y

y x
X X e x e y  

   

 
   ,                              (2) 

and  
(1 ) 2 2

1 2 0 0
Pr( ) { / !}{ ( ) / !} / ( !)x x x x

x x
X X e x e x e x      

    

 
    .              (3)

 

A less mathematical, more empirical project might use these exact formulae to illustrate the 

asymptotic results graphically. The probabilities (2) and (3) could also be evaluated by simulation. 

Now the question of dependence of scores in particular sports is a pertinent one. An ‘Investigation 

of the relationship between scoring rates and outcome uncertainty in a double Poisson match’ 

would make an interesting, empirical study. In the double Poisson match (Karlis and Nzoutfras, 

2003) scores are not independent. One might speculate that scores in rugby union show some 

dependence, but in spite of this as scoring rates increase outcomes become less certain. Finally, 

the project to ‘Investigate the evolution of scoring rates in rugby union over time’ can shed some 

light on the state of this sport and what if anything its administrators should do about it. 

3. Conclusion  

Sport offers many opportunities for projects. This is because data are relatively abundant and easy 

to obtain, models are relatively intuitive, and the context is often evident to the investigator. There 

is also a sport for everyone, and arguably a mathematical project exists within every sport. This 

paper has considered a number of projects that are suitable for final year undergraduates. These 

projects are unified within the notion of a Poisson match. The projects are by no means trivial, and 

some pose questions of which administrators of the respective sports should take note. One 

wonders indeed if administrators use modelling at all to consider proposals for change. Important 

decisions should be based on evidence and such evidence should be scrutinised by good 

modellers. Thus as the business of sport grows, there is a growing need for trained modellers to 

work in sport, and projects on sport are a stepping stone to employment.  
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