
MSOR Connections 16(1) – journals.gre.ac.uk 45

CASE STUDY

Financial computing literacy: 10 steps
Amogh Deshpande, Department of Mathematical Sciences, University of Liverpool, Liverpool, UK.
Email: addeshpa@gmail.com

Abstract
It is often the case that in a financial engineering/mathematics master's curriculum, computer
programming if taught, is before the start of an important course typically titled ‘Numerical analysis
of financial derivatives’. Typically in this computer programming course, C++ is taught, and the
material spans from basic constructs to an introduction to advanced programming such as design
patterns. A major reason for its early introduction is that students would subsequently be able to
use the skills to computationally solve problems occurring in numerics. We believe this curriculum
strategy to be an element of ‘computer literacy’ which has been criticized in our context as one that
discourages students with lower programming abilities who otherwise may have predisposed
mathematical abilities. We aim to make fundamental financial computing inclusive via a series of
10 steps thereby leading to what we refer to as financial computing literacy.

Keywords: Computing literacy, financial computing, 10 Steps.

1. Introduction
MSc courses in Financial Engineering/Mathematics are popular amongst students for its job-
market appeal. A crucial component of its curriculum is a course on numerics. It consists primarily
of finite difference methods (FDM) for partial differential equations (PDE), implicit and explicit
schemes, stability, consistency and convergence, and applications to option pricing via computer
implementation. Typically, student backgrounds range from business, economics, engineering and
mathematics. Enrolment is normally double digit. Unfortunately not all of these have even primary
exposure to computer programming, like the students which we investigate for this case study. On
the other hand, C++ being a favourite language of financial quants (or financial quantitative
analysts), is taught in the programming class. The material therein spans from basic constructs to
an introduction to advanced C++ programming like design patterns. The objective is that students
would then be able to use the skills to computationally solve problems occurring in numerics. We
believe this curriculum strategy to be a part of what Luehrmann (1981) calls “computer literacy".
Luehrmann implies that the word “literacy" after the word “computer”, must also mean the ability to
do computing, and not merely recognize, identify, or be aware of alleged facts about computing.
Inherent in this definition, is a fact that there is something fundamental in computing that every
student must be aware of. However, Harvey (1983) argues that the word “literacy" is unnecessarily
broader in scope. Harvey in fact propositions that computers should be made available to students
as a serious tool and more importantly in a pointed and embedded way, not as something they'll
need later, which in our context happens if programming is taught preceding a numerics course.
This may risk discouraging students who have weak programming skills but otherwise predisposed
mathematical abilities. We believe that if standard computer programming is embedded within
numerics, it can only enthuse students to tune their minds to learn and use advanced financial
computing concepts later on. It also results in a deeper conceptual understanding of the involved
numerics. Additionally, this embedded teaching pattern modulo few changes may also qualify for
its early introduction into an undergraduate curriculum. In summary, the newness of this approach
is its embeddedness within numerics and inclusivity to financial computing via simple steps through
MATLAB. Expectedly, implementing this case study is to aid rather than substitute an important
course on C++ programming.

46 MSOR Connections 16(1) – journals.gre.ac.uk

To achieve this objective, we provide 10 steps that should lead to ‘any slightly motivated’ financial
mathematics student interested in pursuing further advanced financial computing. These steps
start from teacher or tutor-led lab demonstration (to teach students basics of MATLAB) and
culminate with student self-driven projects. These steps must be followed in ascending order and
may or may not contribute to final grade. With no prior assumed coding or any sort of programming
background, the choice of the programming language becomes crucial. We choose MATLAB
instead of C++, for the following reasons: availability, generality, engineering usefulness, stability,
simplicity to use and learn, and hence importantly its inclusivity. This also has been cited as the
reason in Öhström et al. (2005), and Higham (2004) and we concur with that.

We believe that there are three possible ways to introduce computing to students in a lab. These
are:

1. Assign projects while you watch them do. Help them out if needed;
2. Have teaching assistants (TAs) who will join the instructor in helping in-need students in the

lab session;
3. Provide stand and deliver demonstration and craft the lab tutorials in such a way that it

makes them yearn to code.

The first method expects financial computing literacy while the second expects it from the TA’s.
Also, it is costly and restrictive. Hence we followed the third approach. In it lab instruction is carried
out in a wireless internet enabled classroom with desktop and projector screen. We needed
internet to access MATLAB from the university’s software hub. We required wireless room because
students were going to use their own laptops. Brown and Lippincott (2003) have appealed to the
use of laptops in pedagogy, popularly termed as Bring Your Own Device (BYOD). This was not a
constraint since all students usually own laptops or may get them on loan from the university
library. Interestingly, my observation when I once took the lab in a wireless enabled class with
desktop computers was that students found comfort in using their own laptops. We believe the
primary reason being that this way they could sit with their colleagues and discuss the exercises.
However we wish to point out that we envisage that the pedagogy developed here is as effective if
implemented in a room with desktop computers, a computer with projector and a screen. In fact,
we recommend mix use of desktop first and laptops later, since the first nine steps expect
independent work, followed by the last one which encourages group activity in a classroom. We
note here that laboratory teaching activity is also not just about designing the learning task but also
the physical arrangement of the space and the roles of the teachers/students within it (Pretto,
2011).

The idea was to have a stand and deliver approach to lab teaching which had to be carried out.
However, Ramsden (2003) argues that this instruction style encourages surface learning as the
approach in his opinion is narrow and minimalist. Echoing Ramsden, Davies (2008) argues that lab
instructors must ponder as to how to inculcate creativity and independence which could be
fostered via designing lab questions that makes students understand the uncertainties and
inaccuracies of computing experiments from the outset; which we believe is what our 10 steps
achieve. In that spirit, the 10 steps that we designed are based on the pedagogy model of Hazel
and Baillie (1998), and are obviously arranged based on increasing autonomy of these ten tasks.
These activities are based on the classic book of Wilmott et al. (1995). The main reason behind the
choice of this book is that, it has pseudo codes on financial computing using PDEs that can be
made easily compatible with MATLAB or C++, and are also close in sprit to the classic Numerical
recipes book, Press et al. (2007) that we will use at the end.

This laboratory activity resonates with the objective of the Quality Assurance Agency for Higher
Education (QAA) and the UK Standard for Professional Engineering Competence (Engineering

MSOR Connections 16(1) – journals.gre.ac.uk 47

Council, 2014) who state that students should have succinct exposure to hands-on laboratory work
followed by project work to achieve satisfactory understanding (Davies, 2008). Given that such an
objective needs to be covered in a short intensive period of a semester, on an average of three
months that also includes teaching the mathematical theory involved, it is imperative to realize it as
efficiently as we can. This can be achieved, we believe, by focussing only on the very basic
programming tenets needed for implementing numerical pseudo codes as what these 10 steps do.
Table 1 describes numbered exercises in conjunction with expected level of autonomy desired.

Table 1: Levels of autonomy for types of laboratory activity corresponding to exercises

Autonomy Laboratory activity Aims Material Method Answer Exercise

0 Demonstration G G G G 1, 2, 3

1 Test G G G O 4, 5

2 Structured Enquiry G G in w/p O in w/p O 6, 7, 8

3 Open Ended Enquiry G O O O 9

4 Project O O O O 10

Here G, O, G. in w/p, and O. in w/p stands for Given, Open, Given in whole or part, and Open in
whole or part respectively. In the next section we describe a set of MATLAB based exercises. This
set of 10 exercises forms our ten steps. In the table above we map the type of laboratory activity to
these ‘exercises’ as the last column depicts.

2. The 10 steps
Exercise 1. Type a vector u with elements u = (1; 2; 3). Check if you can extract the first element
i.e. 1, by typing u(0) in the command prompt. Comment. Now, extract its third element.

Exercise 2. Write a function that prompts the user to input two real valued numbers. It returns a
sum and a product of these numbers.

Exercise 3. Now write a second function that has a real valued input argument. Call the first i.e. the
earlier function in Exercise 2, in this second function. The product value returned by the first
function is again multiplied by the new real value supplied to this second new function. Now return
the new value of the computed product.

Exercise 4. Write a separate function to compute the Black-Scholes-Merton price. Use the
standard command for the same. You can use MATLAB help or just Google to search the inbuilt
command. Compare your answer with the one generated by this inbuilt MATLAB function.

Exercise 5. Note the grid drawn in Figure 1.

48 MSOR Connections 16(1) – journals.gre.ac.uk

Figure 1: Discretized x – 𝜏 grid

In the already available MATLAB code (see Figure 2), replace FILL by appropriate statements that
codes the grid defined as below. Run the code.

u=0, at x=0 and x=1 ∀ t belongs to [0,∞) ; u=1-4(x-
1
2

)
2

for t=0 ∀ x ∈ [0,1].

MSOR Connections 16(1) – journals.gre.ac.uk 49

 Figure 2: Editable code provided to students

Exercise 6. In the below MATLAB code of this exercise, for Nminus<0 and Nplus>0 integers,
substitute the word FILL so that the code, if typed on the command prompt in MATLAB, will run.

 Figure 3: Editable code to run in MATLAB

Hence, if you want to further code the following for loop pseudo code following the above MATLAB
one, how will you do so?

Figure 4: Additional for loop pseudo code

Exercise 7. Use pseudo code Figure 8.5 (Wilmott et al., 1995) for the explicit FDM and compute
output u at terminal time for Exercise 5 when the stability factor is in the range of [0,0.5] and
otherwise. Comment.

Exercise 8. Use pseudo code Figure 8.11 (Wilmott et al., 1995) for the fully implicit FDM using
SOR and compute output u at terminal time for Exercise 5 when the stability factor is in the range
of [0,0.5] and otherwise. Comment.

50 MSOR Connections 16(1) – journals.gre.ac.uk

Exercise 9. Use the codes developed in Exercise 7 or 8 to compute a Black Scholes Merton price
for European Put.

Exercise 10. Use any pseudo codes in the book on Numerical recipes in C++ (Press et al., 2007)
to compute related mathematical idea in MATLAB.

3. Reasoning
We discuss here the reasons behind exercises enumerated in the 10 steps above.

Exercise 1. This tests whether one can type an array of numbers in MATLAB. Also it tests whether
the user understands that the first element of any array is accessed with counter 1 and not zero.
That is, one should type u(1) in command prompt to get the answer which here is 1 and not u(0).
This also helps the same user deal with a similar issue in C++ where the counter, unlike MATLAB,
does start with 0. Since further FDM pseudo codes use vector operations instead of matrix, this
exercise on vector serves well for later.

Exercise 2. This exercise prompts the user to first write a simple mathematical program in a
function format akin to what “Hello World" is.

Exercise 3. Next, we ask the user to call a function inside a main function. This is what we will do in
the FDM codes, where we write ancillary MATLAB functions that are called into the main function.

Remark A: Note that as per Table 1, Exercise 1, 2 and 3, being fundamental, are demonstration
based. Though this pedagogy is primarily being ‘stand and deliver’, we expect pro-active
participation from the students.

Exercise 4. This exercise tests whether students understood the demonstration held for Exercise 2.

Exercise 5. This exercise makes the student understand how to plot the grid (see Figure 1).

Remark B: Exercise 4 and 5 are test based laboratory type, as noted in table 1, since they are ‘just’
applications of what is covered in the theory class viz. Black Scholes pricing equation and demos
of Exercises 1, 2 and 3.

Exercise 6. This exercise summarizes Exercise 1 on vector indices. The code is also useful while
answering Exercises 7, 8 and 9. In this exercise they will learn to think as they write loops with
arrays.

Remark C: One can heavily utilize MATLABs vectorization facilities instead of loop based vectors.
Hence this may lead to eschewing ‘for’ loops. As argued by Higham (2004) who uses them in
actual codes that he provides, the resultant codes are snappier, shorter and less daunting. We
rightly believe this to be so. However we still introduce loops as these are often seen in the pseudo
codes in Wilmott et al., (1995) and in the classic numerical recipes book of Press et al. (2007).
Hence we introduce this exercise on ‘for’ loops to let the students become comfortable with loops.

Exercise 7. This is our first main FDM code. Students use the pseudo code given in Figure 8.5 of
Wilmott et al. (1995). It defines a grid as in Exercise 5 and imports it in the main file that forms
Figure 8.5 of the said book.

Exercise 8. This is our second main FDM code. The objective is similar to Exercise 7. They are
expected to benefit with better understanding of the SOR method used in the fully implicit FDM.

MSOR Connections 16(1) – journals.gre.ac.uk 51

Remark D: Exercise 6, 7, 8 all come under the pedagogy of what is known as laboratory based
‘structured approach’ in the sense that, as seen by the wordings of these questions, students are
presented with a problem and are suggested some book/reference(s). The output is produced by
an individual primarily in the classroom. Group work is encouraged only outside class. This is
primarily to foster a deep approach to laboratory learning by coding in MATLAB solely via personal
initiative.

Exercise 9. This is our third main FDM code. Student's use the codes developed in Exercise 8 to
compute a Black Scholes Merton price for European Put.

Remark E: Exercise 9, expectedly, is a tricky one. Students are aware that analytic options pricing
formulas are available in the book of Wilmott et al. (1995). They also have relevant FDM codes for
both explicit (see Exercise 7) and fully implicit scheme (see Exercise 8). Using either of these to
finally compute the Black-Scholes price is not that easy as they need to carefully synchronise
codes in Exercise 7 or 8 with several analytic expressions related to options price. This ensures
more decisions and experimental design considerations with students. Hence it is “open ended
enquiry" as per Hazel and Baillie (1998).

Exercise 10. We next make the student do their first major independent project which uses any
pseudo codes from the book in Numerical recipes.

Remark F: Exercise 10, is by nature an independent project. Group activity is encouraged for team
building spirit. Students are expected to become comfortable with the Numerical Recipes book that
is usually used in the quantitative industry.

4. Findings and conclusion
Being a small class, we found by observation that students were undoubtedly much more
connected with numerics since they could visualize the numerical analysis concepts like stability
and convergence using a computer. We believe that these ten steps could also be used to teach
financial computing even to a typically large cohort of 2nd or 3rd year mathematics students who
may only be exposed to smattering understanding of numerical analysis of PDEs. Effectiveness of
these steps correlated strongly with the motivation level of the students. With no contributing credit,
lack of motivation can be remedied by providing contributing credit to at least the 8th / 9th and 10th
exercise. We aim to utilize this study to a large cohort of university undergraduates in financial
mathematics and understand and report their response.

5. References
Brown, M. and Lippincott, J., 2003. Learning Spaces: More than meets the eye, Educause
Quarterly.

Davies, C., 2008. Learning and teaching in laboratories: Engineering Subject Centre guide, Higher
Education Academy. Available at: https://www.heacademy.ac.uk/system/files/learning-teaching-
labs.pdf [Accessed 1 September 2017]

Engineering Council, 2014. UK Standard for Professional Engineering Competence. Available at:
http://www.engc.org.uk/ukspec.aspx [Accessed 1 September 2017].

Harvey, B., 1983. Stop Saying “Computer Literacy"! Classroom Computer News, 3(6), pp. 56-57.

Hazel, E. and. Baillie, C., 1998. Gold Guide 4, Improving teaching and learning in laboratories,
HERDSA publications.

https://www.heacademy.ac.uk/system/files/learning-teaching-labs.pdf
https://www.heacademy.ac.uk/system/files/learning-teaching-labs.pdf
http://www.engc.org.uk/ukspec.aspx

52 MSOR Connections 16(1) – journals.gre.ac.uk

Higham, D.J., 2004. An introduction to financial option valuation, Mathematics, Stochastics and
computation: Cambridge University Press.

Luehrmann, A., 1981. Computer Literacy, What Should It Be? The Mathematics Teacher, 74(9),
pp. 682-686.

Ohrstrom, L., Svensson, G., Larsson, S., Christie, M. and Niklasson, C., 2005. The pedagogical
implications of using MATLAB in integrated chemistry and mathematics courses. International
Journal of Engineering Education, 21(4), pp. 683-691.

Press, W.H.; Teukolsky, S. A.; Vetterling, W.T. and Flannery, B. P., 2007. Numerical Recipes. The
Art of Scientific Computing, 3rd Edition: Cambridge University Press.

Pretto, G., 2011. Pedagogy and Learning Spaces in IT. Proceedings Ascilite 2011 Hobart: Full
Paper.

Ramsden, P., 2003. Learning to teach in higher education. Routledge Falmer, 2nd Edition. London.

Wilmott, P., Howison, S. and Dewynne, J., 1995. The mathematics of financial derivatives: a
student introduction, Cambridge University Press.

