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Abstract  

To inform discussion about content for the first year of undergraduate mathematics, a study was 

completed which reviewed: the A-level Mathematics specification; published literature on the 

transition from A-level to university mathematics; the second and third year curricula of modules at 

three English universities with different foci. This aimed to investigate what students might 

reasonably be expected to have covered when they arrive at university, what happens in practice at 

the transition to university, and the role of the first year as preparation for later study. Content 

suggestions focus on calculus, linear algebra and analysis as core topics. There is also evidence of 

the need to focus on students' understanding of where formulae and solutions originated as well as 

their ability to produce pieces of academic and mathematical writing. Findings also include 

suggestion that what happens in the first year, while similar between institutions, does depend on 

the overall focus of the degree programme. 
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1. Introduction 

Although a reasonable amount of research exists regarding issues faced by students transitioning 

from Further to Higher Education in the field of mathematics, there is little discussion of concepts 

that are key during the first year of study for a BSc Mathematics course. This article is designed to 

provide some discussion in this area, through analysis of the Department of Education GCE 

Mathematics specification (DoE, 2016), review of relevant literature, and examination of BSc 

Mathematics courses at three UK universities, selected to provide a varied basis for discussion. 

Readers should note the anglocentricism of this article, as the university courses selected for 

discussion are based in England, and the Further Education analysis uses only the GCE A-level 

specification, in lieu of potential alternatives such as the International Baccalaureate. 

2. Method 

The research for this project aimed to examine three key elements that must be considered when 

discussing BSc Mathematics first year curricula: the material studied directly prior to the first year of 

study (in the UK, Further Education most commonly takes the form of A-levels); the differences in 

material, focus, student independence and other factors between further level mathematical 

education, and higher level; and the curricula at three UK universities, specifically selected for 

maximum contrast in their focuses on pure and applied topics in mathematics, covering as broad a 

scope as possible without focusing too heavily on this area. 

2.1. Review of A-level syllabus 

Preliminary research involved an in-depth analysis of the Department for Education specification for 

A-level Mathematics, to ascertain the level of knowledge that can be assumed of university starters. 

A-levels are the UK standard qualification of Further Education (typically studied for between the 

ages of 16 and 19), and the vast majority of BSc Mathematics courses at UK universities require an 

mailto:alex.capes@hotmail.co.uk
mailto:alex.capes@hotmail.co.uk
mailto:p.rowlett@shu.ac.uk


 

MSOR Connections 16(2) – journals.gre.ac.uk 17

 

A-level (or equivalent) qualification in Mathematics, ordinarily at grade C minimum. This analysis 

formed a basis for the rest of the research undertaken, as it highlighted the areas of mathematics 

that are studied in depth, and areas that potentially require additional support during the first year of 

undergraduate study. 

2.2. Literature Review: Issues in Transition from Further to Higher Education 

A literature review covers material from over 50 years of research into the difficulties faced by 

students of mathematics at the further and higher levels, providing an overview of opinions of some 

experts in this field. Additionally, some examination of the differences between Further and Higher 

Education is included to contextualise any comparisons thereof. 

2.3. Review of Second and Third Year Curricula at Three UK Universities 

The third part of this article is a comparison of the second and third year curricula at three UK 

universities for their respective BSc Mathematics courses, the aim of which is to identify some 

mathematical topics and skills that are required to be covered in the first year of higher level study 

as preparation for the second and third years. The QAA Benchmark Statement (QAA, 2015) defines 

mathematics degrees on a spectrum from “theory-based” to “practice-based” and allows a broad 

range of options for the focus of a degree. The universities chosen will remain unnamed, and shall 

be hereon referred to as University A, B and C, respectively. University A is a research-intensive, 

pre-1992 university, with Mathematics courses ranked in the top five on entry tariff (Guardian League 

Table, 2018), whose BSc Mathematics course features a strong focus on pure mathematics. 

University B is a research-intensive, pre-1992 university with Mathematics courses ranked around 

20th on entry tariff (Guardian League Table, 2018), whose BSc Mathematics course aims to balance 

the focus between pure and applied topics. Finally, University C is a post-1992 university with 

Mathematics courses ranked bottom 10 by entry tariff (Guardian League Table, 2018), whose 

Mathematics course focuses strongly on applied mathematics. 

3. A-level Syllabus Review 

The A-level syllabus splits the content of the Pure Core modules into ten discrete sections (DfE, 

2016), which are as follows: Proof, Algebra and Functions, 2-Dimensional Coordinate Geometry, 

Sequences and Series, Trigonometry, Exponentials and Logarithms, Differential Calculus, Integral 

Calculus, Numerical Methods, and Vectors.  

In addition to the basic concepts of Proof, the syllabus names proof by exhaustion, deduction, 

contradiction, and disproof by counterexample, as areas of study to be covered. Although students 

must learn the principles of these techniques, it could be suggested that more emphasis on rigorous 

and sound mathematical reasoning when constructing proofs would benefit those students 

continuing into higher level mathematics. 

The Algebra and Functions section of the syllabus aims to build some foundations of algebraic 

manipulation methods required for further study of calculus and analysis; the syllabus covers a wide 

breadth of topics, including surds, algebraic manipulation of polynomials and first- and second-

degree inequalities, laws of exponents, proportional relationships, partial fractions, and the 

manipulation of functions and their graphs.  

In Co-ordinate Geometry, students can be expected to study straight-line equations, circular 

geometry, and parametric equations. These topics provide foundations for work using ordinary and 

partial differential equations, and general work in areas of analysis, such as measure theory. 
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The Sequences and Series section provides essential introductions to concepts such as sums to 

infinity (used in a wide variety of contexts in analysis), the general idea of infinite series/sequences, 

and iterative formulae. Additionally, students are introduced to sigma notation, and other classical 

notation. 

The Trigonometry section of the syllabus goes beyond the basics of sines, cosines, and tangents, 

and covers their reciprocals and inverses, various trigonometric identities, and double angle 

formulae. Some proofs involving trigonometric functions are also included on the syllabus. This 

understanding of trigonometry is integral in the study of any topic involving waves, signals, and/or 

analytical methods. 

The main direct precursors to undergraduate level calculus and analysis (and any topics containing 

differentials and integrals) on the syllabus are the Exponentials and Logarithms, Differential 

Calculus, and Integral Calculus sections. Students are taught the basics of differentiation and 

integration, including the chain, product, and quotient rules of differentiation, and integration by parts 

and substitution. The syllabus also mentions the Fundamental Theorem of Calculus. Linking this 

knowledge with exponential functions and logarithmic laws gives students the basis to study most 

higher topics with strong calculus components. Continuing the work on integration, students are 

introduced to numerical methods of solution for definite integrals (using Simpson’s Rule and the 

Trapezium Rule), widely used in a variety of applied topics at undergraduate level.  

Finally, the syllabus covers Vectors in 2- and 3-dimensions; although the syllabus sticks to the basics 

of vectors (running through vector notation, component and magnitude/direction forms, the 

geometric implications of position vectors, and basic vector arithmetic), these concepts are 

imperative for any later study involving the complex plane, and/or vector calculus. 

4. Literature Review: Issues in Transition – Further to Higher 

Questions may be raised about the efficiency and depth of the previously discussed curriculum, 

when considering the importance of concepts behind proof and calculus (Prendergast et al., 2017), 

and the changing standards of assessment at A-level. For example, Epstein (2013) notes that 

assigning work based on derivations of formulae and justifications thereof, rather than algebraic 

drills, has proven to greatly improve students’ understanding of the topic of calculus, and 

demonstrated benefits for students who have continued into tertiary study. Epstein also notes that - 

while a direct cause-and-effect relationship cannot be established between the assignment of these 

tasks and an increase in technical prowess - due to the strong positive correlation, further discussion 

is warranted. By contrast, it is noted that some students view mathematics as a “rote learning activity” 

(Nardi and Steward, 2003; p. 362); a problem also highlighted in school inspections (Ofsted, 2012).  

Lawson (1997) notes that in a study carried out by Coventry University, in which undergraduate 

students were asked a series of questions based on principles that are covered in the A-level 

curriculum, the attainment levels of students with A, B and C grades were virtually indistinguishable 

from one another. This raises the question of whether A-level grades are a worthwhile indicator of 

students’ later ability to study mathematics at higher level.  

As noted in Tackling the Mathematics Problem (LMS, IMA and RSS, 1995), issues surrounding A-

level programmes and their efficacy in preparing students for undergraduate study have been of 

concern for governmental (Burghes, 1990) and non-governmental (Osmon, 2013) organisations 

since the 1990s. Moore (1994) suggests that the minimal focus on the fluent mathematical writing is 

detrimental to students’ abilities to construct formal proofs, which makes a strong case for the 

introduction of some measure to remedy this imbalance. Additionally, What Maths do you need for 

University? (Osmon, 2010) indicates that the absence of linear algebra in the A-level curriculum puts 

students at a clear disadvantage, given the range of mathematical topics requiring its usage. 
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Burton and Haines (1997) suggest that the burden of fixing the issues in transition lies with the 

designers of the A-level specification, implying that a higher level of contextualisation of techniques 

would aid students in their general understanding of topics such as calculus and analysis. A strong 

understanding of differential calculus is noted by Biza et al. (2016) as a vital prerequisite for 

undergraduate level study of mathematics. Abdulwahed, Jaworski and Crawford (2012) support this, 

suggesting that earlier introductions of contextualised calculus problems would potentially give 

students a more meaningful understanding of these subject areas, whilst also granting them greater 

insight into the sort of mathematics covered at undergraduate level. 

Kalajdzievska (2014) showed that students creating their own questions and mark-schemes for 

areas of calculus demonstrated a lack of understanding of the fundamental reasoning behind the 

uses of calculus in applied mathematics. This suggests that giving students a greater focus on the 

applications of calculus at an earlier point in their education would potentially benefit them by the 

time they reach undergraduate level. Ellis et al. (2015) highlighted the need for a keen understanding 

of the principles of calculus in first-year undergraduate mathematics study, due to the prominence 

of calculus throughout BSc Mathematics courses; this lends credence to the notion that calculus 

must form a substantial element of the first year of any BSc Mathematics course, due to the reliance 

on it in most further module areas. 

Another issue in transition is that of students’ lack of technical and mathematical fluency in their 

exams and written assignments. The results of a study by Stylianou, Blanton and Rotou (2015) into 

undergraduates’ understanding of proof and its surrounding concepts posit that students do 

understand the importance of proof and well-written mathematical arguments, however they are not 

encouraged enough through the means of assessment to improve their own mathematical 

communication skills. Solomon (2006) suggests that a lack of contextualised material at A-level 

hinders students’ understanding of the importance of mathematical communication; for example, 

due to the lack of a coursework element, students are almost never required to construct long-form 

mathematical arguments, supported by their own mathematical assertions, as is the case at degree 

level. It is also suggested in a paper by Hoyles, Newman and Noss (2001) that critical evaluation of 

mathematics problems is an area of poor understanding for many undergraduate mathematics 

students, which demonstrates the need for change at some level to address this issue. 

Iannone and Simpson (2011, 2012) have posited that there is a fundamental lack of students’ ability 

to explain their mathematical ideas in an academic manner, which is suggestive of a requirement for 

more universities to place emphasis on these issues as early as possible in their BSc Mathematics 

programmes. This assertion is supported by Sofronas et al. (2015), who note that calculus is used 

as a unifying thread in the first year of undergraduate teaching, and the contextualisation of calculus 

as a pure mathematical concept is directly beneficial to students in this regard. This ties back into 

the aforementioned requirement for students’ to possess a keen understanding of the applications 

of pure mathematics and the theories behind calculus and analysis, as noted by Jaworski, Mali and 

Petropoulou (2017), who state the importance of explaining the reasoning mathematical principles 

to students. 

It should be noted that all of the studies with experimental components mentioned here contained 

relatively small sample sizes, rendering their validity somewhat questionable in this context. 

Additionally, due to the inherently subjective nature of topics in pedagogy, there is likely to be 

confirmation bias present in some of the sources named. In spite of these elements, there is still 

clearly a strong case for a need for change at some level to address the growing concerns 

surrounding the transition from A-level study, to degree level study. 
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5. Examination of Selected University Curricula 

As stated previously, part of this study involves an examination of the second- and third-year 

modules of the BSc Mathematics courses at three UK universities, selected for the different focuses 

of their courses, in order to provide a strong and clear contrast. In spite of this contrast, it should be 

clear that there are several common required skills and technical areas of knowledge across the 

three courses. It should be noted that the sample size has been kept deliberately small, to enable a 

more thorough examination of each university in the time available for this study.  

Firstly, the BSc Mathematics course at University A focuses heavily on pure mathematics, with 

students expected to carry out rigorous and extensive proofs of a wide variety of subject areas, and 

utilise both analytical and numerical methods of solution for the real-world contexts, when they are 

mentioned. More so than with the other mentioned university courses, students of this course must 

clearly possess a strong level of competence in terms of differential and integral calculus, as well as 

confidence in proof construction, algebraic discourse, a variety of forms of mathematical notation, 

and academic writing with a substantial mathematics component as a whole. 

The BSc Mathematics course at University B features a more balanced programme in terms of pure 

and applied mathematics, with students having the option to determine how much they want to lean 

in either direction; this element of choice is particularly noteworthy in this context, as the university 

must ensure students are equally capable in a variety of areas during their first year of study, such 

that they can excel in their second and third years of study in more specialised areas. The majority 

of modules on this course require a clear understanding of the principles of calculus and analysis, 

along with a strong focus on producing professional-looking work with a sound basis in fact and 

mathematical reasoning. There is a slight emphasis on the study of mathematical physics, with one 

core module in each of the second and third years of study centring around topics in it. In accordance 

with typical scientific modules at universities, these modules require strong analytical skills, and 

excellent objective writing abilities, backed up by well-grounded mathematical arguments, presented 

in a clear, objective manner. Finally, there is also an emphasis on the proper construction of proofs, 

such that several core modules contain elements of proof construction as either a focus, or a sidebar. 

These proof-based tasks clearly also require the ability to construct strong, sound mathematical 

arguments and present them in a way that is professional and clear to the reader. 

Finally, the BSc Mathematics course at University C has a strong focus on applied mathematics over 

pure mathematics. Nonetheless, students are still required to produce work demonstrating a clear 

and present understanding of analytical methods of solution, as well as utilising differential, integral 

and vector calculus in an applied mathematics context - such as in final year modules focused on 

fluid mechanics and modelling using partial differential equations. Additionally, students are required 

to produce professional and academically credible pieces of mathematical writing, which clearly 

necessitates a keen understanding of the principles of mathematical fluency in communication – a 

common theme throughout all the modules analysed, with the exception of the final year project, 

which can of course take very different directions on a student-by-student basis. 

6. Discussion 

This article aimed to inform discussion of curriculum developments at first year undergraduate level 

by examining what students who studied A-level can be expected (in principle) to have covered 

before they arrive at university, what happens (in practice) at the transition to university and the role 

of the first year as preparation for later study.  

While the A-level syllabus covers a wide range of important material, this investigation suggests that 

too little emphasis is placed on ensuring that students understand where formulae and solutions 
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originated, with too much focus on learning by rote; arguably (e.g. Epstein, 2013) a major cause of 

students’ difficulties in making the transition to university level mathematics from A-level.  

The examination of later years of study at three universities highlights the variety of practice in UK 

higher education mathematics degrees. All three courses clearly meet the standards set out by the 

QAA Benchmark Statement (QAA, 2015), despite having considerable differences. This invites the 

suggestion that the first year of a university maths degree should differ according to the nature of 

the degree course. Despite differences, it is noted that students studying for any of these courses 

would be required to have strong understanding of calculus, linear algebra and analysis. The 

evidence examined here also highlights the need to produce pieces of academic and mathematical 

writing. It may be concluded from this study that these topics are considered key elements of a wide 

variety of mathematics undergraduate courses. Good (2011) reports on an exercise where 

representatives of UK mathematics departments were asked to “list the top five topics they felt a 

mathematics undergraduate must not graduate without knowing”. Note that Good’s focus is on the 

whole degree, not just the first year. The most common mathematical choices reported by Good 

were topics around analysis, calculus and linear algebra, and the exercise reported also highlighted 

“the ability to communicate mathematics” among other valued graduate attributes. The findings of 

this present study, then, support those reported by Good.  

It should be noted that the study here is based on examination of a small number of university 

courses and a review of some relevant literature. However, a picture has emerged of measures that 

could be taken to assist students with the transition to becoming university mathematics students. 

The evidence reviewed in this study leads to the conclusion that the first year of an undergraduate 

curriculum could place greater emphasis on creating and communicating clear mathematical 

arguments. This would aid students with key issues around transition and provide a strong basis for 

later study.  
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