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Overview of Statistical Tests 

1. What statistical tests do.    Given the variability in any set of data, statistical tests allow us

to distinguish interesting variation from uninteresting, background, random variation; if

you like, to tell the signal apart from the noise.  Interesting variation arises from differences

between groups of items in the set of data, or from associations in the data.  Differences

between groups spring from questions such as: do left-handed cricketers score more runs

than right-handed ones, or how do the stone axe-heads of Wales, the Lake District, East

Anglia and Kent differ in size?  Associations occur when we ask questions about whether

colour of hair is related to colour of eyes (including do redheads really tend to have green

eyes?), or if the number of mink living on a river is correlated with the number of water

voles, and so on.  The background variation arises from miscellaneous causes, not relevant

to the question of interest.

In the set of data, interesting and background variation are mixed up in the actual values 

of the observations.  To answer the question about differences or associations we need a 

method that can separate the two sources of variation and give us a way of assessing 

whether the difference or association is likely to be genuine or just a chance effect in the 

data.  In principle, statistics is simple: it is about measuring variation, attributing causes, 

and calculating the probabilities of obtaining particular sets of results by chance. 

2. A dose of scientific philosophy.    In terms of formal logic and scientific method, we set up

a null hypothesis that there is a specified difference between the groups, or a specified

association.  The specified difference is often zero difference or zero association but it can

be a non-zero difference or some particular association if required.  We then attempt to

falsify (i.e. to nullify) the hypothesis, using a statistical test to calculate how likely it is that

we would get the results we have in the set of data if the null hypothesis were true.  If it is

not very likely then we proceed as if the null hypothesis has been falsified, i.e. we work on

the basis that there is a difference between the groups, or there is an association.  We cannot

be perfectly sure, but we can be reasonably sure that the difference or association is "true"

unless a rather unlikely event has occurred.  The unlikely event is the occurrence of a set of

data showing the specified difference or association when really there isn't one.  We return

to this point in §4.

3. How statistical tests work.    We choose an appropriate statistical test, depending on the

question asked and the type of data (see §5 and §6).  We calculate the test statistic for this

test from the data.  Now we need to find the degrees of freedom (abbreviation df or d.f.);

this depends on the number of observations or on the number of groups in the data (see

Appendix A, §A1).  Then we find out the probability associated with the calculated test

statistic and its degrees of freedom.  A computer package will provide the probability to

three or four decimal places but for other calculations we look up the test statistic in tables

of critical values to find a range of probability associated with it (see Appendix B).  The

probability is interpreted to provide the statistical significance, i.e. do we regard the

difference or association of our initial question as statistically significant or not?  The

conventional levels of significance are shown in Figure 1.
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Figure 1.  Diagram to show how ranges of probability are coded to provide levels of 

significance.  It is set out in the same way as tables of critical values for test statistics, 

reading columns from left to right with probability becoming smaller.  If your probability is 

exactly on the threshold, then the interpretation is to the left.  So P ≥ 0.05 means not 

significant, P < 0.05 significant; P ≥ 0.01 significant, P < 0.01 very significant, and so on. 

4. Proof and probability in statistical testing.    You cannot prove anything with statistics.

You can compute the probability of obtaining a set of results like this (or more extreme) if

the null hypothesis was true.  If the probability is small, then you can proceed as if the

unlikely event has not occurred, as if the result is genuine.  We use certain thresholds of

probability, arbitrary probabilities but well-accepted and conventional (see §12).  The

thresholds separate ranges of probability, as shown in Figure 1, and these ranges are

interpreted as levels of statistical significance.  See Appendix B for how to use the table of

critical values for a test statistic to find the probability associated with your calculated

value.

It is important to realize that the probability associated with the test statistic is not the 

probability that any hypothesis is true (see §11 and Appendix A, §A2).  It is the probability 

of obtaining this set of results or results more extreme than this if the null hypothesis was 

true.  The true understanding is this.  If the null hypothesis is true (i.e. there really is no 

difference or no association) then we would expect to obtain results like these (or more 

extreme), with this calculated probability.  That is what "significant at P = some value" 

really means.  There is more about P values and statistical significance in §11–§13, but for 

the moment we turn to how data are collected and used in statistical tests. 

If you obtain nothing else from this module, remember this, shouted here in a box. 

You cannot prove anything with statistics.  You can compute the 

probability of obtaining a set of results like this (or more extreme) if the 

null hypothesis was true.  If the probability is small, then you can proceed 

as if the unlikely event has not occurred, as if the result is genuine. 
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5. Procedure.    Figure 2 summarizes the procedure as a flow chart.  Notice the order: you

must think of the question first, then find out what data will be required, then decide on

which test will be appropriate, then consider the assumptions, and only then collect suitable

data.  (Well, that is the ideal, not always attained in practice.)

Decide on the question being asked. 

 
Decide on the data to be obtained. 

 
Decide which statistical test will be needed. 

 
Consider how the assumptions for the test will be satisfied. 

 
Gather the data. 

 
Arrange the data on paper in a meaningful way, i.e. classified into groups 

(for chi-squared, t-test or ANOVAR) or in pairs (correlation, regression). 

 
Decide whether to analyse 

by hand and calculator or by computer package. 

  
Find the formulae for the test. Enter the data on the computer 

datasheet, arranged in columns. 

  
Calculate the test statistic. Specify the statistical test, 

usually from a menu. 

  
Work out the degrees of freedom. The package calculates the test 

statistic, and degrees of freedom. 

  
Compare the calculated test statistic View and print the test statistic and 

with the value in statistical tables. its associated probability. 

  
Interpret the probability for statistical significance, and come to a 

conclusion about the difference or association of the initial question. 

Figure 2.  Flow chart of the procedure for statistical testing. 
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6. Choosing a test.    Refer to Table 1 to choose a suitable test for your question and data.  An

outline of each test, including an example, is given on pages 11–16.

Table 1.  Guide to statistical tests, arranged by their purpose. 

Purpose Statistical test 

Describe the data and make 

simple inferences. 

Descriptive statistics and simple inferences. 

Descriptive statistics include mean and standard 

deviation, and the frequency distribution of the 

observations.  Simple inferences require calculation 

of standard error, looking up a value of Student's t, 

and calculation of confidence limits.  Descriptive 

statistics and simple inferences are not statistical 

tests as such but do use Student's t which is used 

elsewhere as a test statistic.  From the sample of data 

you can make inferences about the population that 

the sample represents, from which it was taken. 

Look for association. 

Classification of attributes. Chi-squared test, which looks for association 

between categories, cross-classified into groups, 

using the actual counts.  The test statistic is 

chi-squared, χ2. 

Between two measured attributes. Correlation.  The two attributes must be 

measurable, continuous quantities that can be plotted 

on a scatter graph.  The test statistic is the correlation 

coefficient, r. 

Compare means. 

Only two groups. The t-test.  The means come from the two groups.  

The test statistic is t, Student's t. 

Two or more groups. Analysis of variance (abbreviated to ANOVAR or 

ANOVA).  The means come from different groups of 

cases (or items or subjects) in the set of data.  The test 

statistic is the variance ratio, F. 

Predict one quantity from another. Regression.  The two quantities are measurable, 

continuous attributes, related by a straight line (in 

simple regression).  We obtain the line of best fit to 

draw on a scatter graph with the equation for the line.  

Analysis of variance is used to test whether the 

regression is statistically significant (test statistic is 

F).  You will also see the coefficient of 

determination, r2, which indicates the proportion of 

variation explained by the regression. 
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7. A worked example.    References to the procedure in Figure 2 are in italics, and technical

terms in statistical testing (mentioned in §3) are in bold.  This example is imaginary but

plausible.

A researcher suspects that the voles on an island are larger than those on the mainland 

(initial question); they are known to be the same species, and adult males and females do 

not differ in weight.  It will be necessary to catch some voles and weigh them (data to be 

obtained).  Variation in vole weights is expected so a statistical test that compares the 

average weights of island voles and mainland voles is required.  Reference to Table 1 

shows that the t-test is appropriate for comparing the means of the two groups (decide on 

suitable statistical test) with the null hypothesis that the two groups do not differ in mean 

weight.  The assumptions are considered for a t-test (p. 14) and used to write the protocol 

for fieldwork.  Traps are set in widely scattered locations in vole habitat on the island and 

on the mainland.  The trapped voles are weighed (data gathered) and released.  Traps are 

moved after each successful operation to minimize the chance of catching the same vole 

again.  The data and calculated quantities are given in Table 2 (data on paper; calculations 

for test statistic and for degrees of freedom). 

Table 2.  Weights of voles captured on an island and on the adjoining mainland, and 

calculations for the t-test. 

  Weight of vole (g) 

Island Mainland 

118 119 

126 130 

130 120 

125 123 

120 121 

131 129 

122 114 

124 121 

121 118 

115 

117 

n 9 11 

mean 124.11 120.63 

SD 4.4001 5.1239 

Difference between the means 3.4747 

Pooled variance = 23.191 

SE of the difference = 2.1645 

t = 1.605 

Degrees of freedom =  nisland + nmainland – 2 = 18 

Probability > 0.10 (from statistical table;  

in fact P = 0.126 from a computer package) 

so not significant 

The 95% confidence limits for 

the difference (3.4747 g) are 

–1.0729 to 8.0223 g.  Since the

statistical test was not 

significant at P ≥ 0.05, the 

limits include zero. 
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The researcher concludes that there is no significant difference between the weights of 

voles on the island and the mainland (t = 1.61, 18 degrees of freedom, P = 0.126; 

two-sample t-test, homogenous variances).  (The sentence above includes the statistical 

significance, the value of the test statistic, the degrees of freedom, and the probability 

associated with the calculated test statistic.  The interpretation is given first and then the 

evidence for it as the details of the statistical test in brackets.  There are several versions of 

the t-test so for completeness the particular version, here the commonest, is named.) 

Points to note.  The researcher is sampling from two populations (it is thought) so in 

each location the traps are widely spaced to minimize capture of related voles which would 

not be independent observations (families of voles could be consistently smaller or larger 

than the mean).  The procedure to avoid recapture was mentioned above, and this also 

reduces the chances of capturing a vole related to a previously trapped one.  Consequently 

the observations are random and independent samples from the population, as far as is 

practicable.  This is an important assumption for the t-test.  Others are about homogeneity 

of variance (satisfied here because the standard deviations for the two groups are very close) 

and Normality (hard to tell with such small samples but each group has a central peak in its 

frequency distribution even if it is not much like the silhouette of a bell). 

Note that we cannot say there is no difference in weight: clearly there is, with sampled 

island voles 3.47 g heavier on average.  But we say that this is not significant statistically 

(our interpretation of the results of the t-test) which means that we will act as if there is no 

difference.  We believe that this observed difference in weight in our data arose by chance 

alone.  Moreover, we have calculated the probability that if there was in fact only one 

population of voles, spread across the mainland and the island, we could obtain two 

samples like this with this difference in weight or a more extreme difference.  The 

probability is the one associated with the test statistic, i.e. P = 0.126.  Expressed in another 

way, there is a better than one in ten chance (about one in eight) of obtaining samples like 

this, that have this difference in weight or a larger one, when there really isn't a difference. 

8. Statistical significance and practical significance.    Statistical significance can be

paraphrased as "is it true?" or more correctly "is it likely to be true?".  Practical significance

is "does it matter?" or "is it worth taking account of, basing decisions on?".  Practical

significance is the more general term but you will see this kind of significance spoken of in

a particular context, e.g. is it educationally significant, or clinically significant (in medical

research), or archaeologically significant, or biologically significant?

Returning to the vole example above, it is possible to calculate how large the samples 

would need to be for a difference in weight of 4 g to be seen as statistically significant (i.e. 

with probability associated with the test statistic, t, less than 0.05—see Figure 1).  It turns 

out that with two samples of 13 voles each, assuming the same variability as found before, 

then a difference of 4 g would be significant (P < 0.05).  This is a common finding: larger 

samples may give a statistically significant result because the larger value of n affects the 

calculation of standard error and also, through the degrees of freedom, the critical value of 
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the test statistic.  If the samples of voles were 22 each from island and mainland then a 4 g 

difference could be detected with P = 0.01, i.e. it would have to be a hundred to one chance 

to get such samples if the difference in weight did not really exist. 

However, is a difference in weight of 4 g of biological significance, given that it is 

about 3.3% of the average weight of voles?  The weights of small mammals are variable 

during the day and over a season depending on food availability and temperature, and could 

easily change by 10% in an individual vole.  In this context, the difference of 4 g, even if 

statistically significant, may have no biological significance from the point of view of 

assessing whether the voles were better fed on the island than the mainland. 

On the other hand, we may be wondering if island voles are heavier than mainland ones, 

as often found, so we look for evidence that the island population has started to diverge 

from the mainland one through its isolation.  In this case, a difference of 4 g could be 

biologically significant.  A divergence has to start small and become larger, so a 

statistically significant difference could be seen as identifying the start of the divergence 

process. 

There are no easy answers to these problems about statistical and practical significance.  

You need to be aware of the topic in case it turns up in your own research in the future.  

Another way of looking at this problem is the difference between hypothesis testing (to 

obtain statistical significance) and estimation of size of effect (to assess practical 

significance—see also §14).  For example, in the vole example above, we can focus 

attention on the size of the difference, where we find that the 95% confidence interval is 

–1.07 to 8.02 g.  These limits include zero so we have to conclude (with 95% limits) that we

have not detected a significant size of effect, just as we concluded from the statistical test. 

9. The conclusion of a statistical test.    It is important to write a clear statement of results

from a statistical test.  This will include the calculated value of the test statistic, the degrees

of freedom, the probability associated with the test statistic, and your interpretation of that

probability as a statistical significance.  (These are the terms highlighted in §3, the

components of statistical testing.)  If it is not evident from the test statistic named, or there

are several versions of the test, state which statistical test was used.  When you have an

exact probability, from a computer package, then quote that in the statement of results.

Otherwise, give the value with a < or > sign, as in Figure 1.  In statistics, it is sufficient to

say, for example, P < 0.05 without specifying also > 0.01 because it is understood that if P

was < 0.01 you would have said so.

Example for a chi-squared test.    Although the proportion of left-handed males (20%) is

greater than for females (10%), this was not statistically significant (χ2 = 2.550, 1 d.f., P >

0.05).  (The symbol, χ2, is chi-squared, i.e. the Greek letter chi, squared.)

Example for a correlation.    There is a significant correlation between monthly totals of

rainfall and sunshine (r = –0.699, 10 degrees of freedom, P = 0.0115).

Example for a t-test.    The mean interpupillary distance in males was 2.89 mm greater

than in females and this was highly significant (t = 5.22, 141 d.f., P < 0.001; two-sample

t-test, homogeneous variances).  (Since there are several versions of the t-test, it is helpful

to specify which one was used.)
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10. Parametric and non-parametric tests.    All the statistical tests given in Table 1, except

chi-squared, are called parametric tests because the test statistic is calculated from the

actual values of the data, the measured values.  There are other tests, called non-parametric,

which work on the ranks of the data, i.e. the place in order from smallest to largest, instead

of the actual value.  On the whole, parametric tests are to be preferred because they use all

the information that you have.  Non-parametric tests are required when the data really do

not conform to certain assumptions necessary for parametric tests to provide correct results,

i.e. an accurate value of the probability associated with the test statistic.  In this module we

have not included non-parametric tests because of the limited time available for teaching

statistics.  If non-parametric tests turn out to be needed for your research project then you

will need to look them up in statistical textbooks, and seek help from a statistician if

necessary.

11. Correct understanding of P values.    It is hard to grasp the correct use of probability (P

value) in statistical testing.  The definition of P value is: "the probability of the observed

data (or data showing a more extreme departure from the null hypothesis) when the null

hypothesis is true" (Everitt (1998) Cambridge Dictionary of Statistics).  See also Appendix

A, §A2.

The probability associated with the test statistic provides a quantitative measure of the 

evidence about the null hypothesis.  If the probability is small, we are in a position to not 

accept the null hypothesis because there is a lot of evidence (in the data) against it.  "Not 

accept" is the recommended phrase over "reject" which is too definite.  The question is: 

how small must the probability be?  The practice has evolved of using P = 0.05, 0.01 and 

0.001 as threshold or boundary values of probability (see Figure 1).  Other people may refer 

to these values of probability as cut-off levels or cut-offs.  By using these thresholds we are 

turning a quantitative measure into a qualitative one, i.e. categories, so that we can make a 

decision, one way or the other, about whether the result is to be regarded as genuine.  (In a 

similar way, the quantitative score in goals of a football match is converted to a qualitative 

measure, categories, of win, lose or draw.)  The categories or levels of statistical 

significance (Figure 1) are your interpretation of the P value.  Whenever possible, provide 

the exact probability so that readers can apply different thresholds if they wish (see 

Appendix B, §B1). 

12. Why use P = 0.05 as the first threshold of statistical significance?    The value of P =

0.05 is entirely arbitrary but has become a well accepted convention.  All that can be said to

justify 0.05 is that its use over many years in research work in all fields has been successful,

on the whole, in identifying interesting results.  The one in twenty chance of being misled

has not held back progress in research.

Moreover, the use of P = 0.05, 0.01 and 0.001 thresholds was a necessity in the days 

before computers.  It was not practicable to calculate the exact probability so statistical 

tables were used (see Appendix B) to find a range of probability for a particular calculated 

value of the test statistic with its degrees of freedom. 
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13. What "not significant" means.    If your calculated probability is 0.05 or greater and you

interpret this in the conventional way as not significant, what does this mean about your

results?  It is better to say that "a difference could not be detected" (a difference between

means for example), or that "there was no detectable association" (in a chi-squared test), or

"no detectable correlation".  This is preferable to "there was no effect" (of experimental

treatments or between groups in a survey or relationship between measurements or

categories).  There could be an effect but we simply failed to find it (as discussed in the vole

example, §7).  To use the well known adage: absence of evidence is not the same as

evidence of absence.

Not significant is a broad category.  It could mean that: 

(a) there is really no effect; or 

(b) there is a small effect but it is lost in the background variability (noise); or 

(c) there is a large effect but not detectable in this set of data because there was also a large 

amount of background variability. 

This last case can be common in educational, medical or biological research where people 

and organisms are intrinsically so variable. 

Whenever possible give the exact probability (see Appendix B, §B1).  The P values of 

0.055 and 0.55 would each be interpreted as not significant but they have different 

implications.  If P = 0.055 then you might think that this is a near miss.  If you had more 

degrees of freedom (from larger samples or more replication) then you might have detected 

an effect.  You might try the survey or experiment again with more degrees of freedom; or 

you would not be surprised if similar surveys or experiments had been successful in 

detecting an effect.  In the case of P = 0.55 you would probably conclude that there was 

genuinely no effect, or such large amounts of background variation as to completely 

conceal an effect even with more degrees of freedom. 

14. Effect size versus hypothesis testing.    The procedure for statistical tests has been set out

in terms of testing hypotheses (§2–4).  It is also important to look at the size of the effect;

effect size and hypothesis testing are complementary.  This is easily done for the t-test or

analysis of variance where we are comparing the means of treatments or groups.  We

calculate the difference between means and the confidence interval for the difference, as in

Table 2, bottom right.  The advantage of effect size is that we can see the direction of the

effect (island voles heavier) and the size (by 3.5 g), plus make a decision on statistical

significance based on the 95% confidence limits (–1.07 to 8.02).  Since these limits include

zero, we interpret the results as not significant.  We assert, in the language of confidence

limits, that the true value of the difference lies in the range –1.07 to 8.02 g unless a 1-in-20

chance has occurred.  Since this range includes zero, and some values where the difference

is in the reverse direction, we conclude that it is not significant.

Setting out clearly the effect size and its confidence limits also leads to consideration of 

practical significance.  Read §8 again because this is an important topic to understand. 
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15. Outlines of statistical tests.    On the six pages following there is a one-page outline of

descriptive statistics and simple inferences, chi-squared test, correlation, t-test, analysis of

variance, and regression.  A standard set of headings is used.  The outline provides enough

details to enable you to understand what the test does, when and how it is applied, and how

the result is interpreted.  This will help you to assess use of these tests in the research

literature that you read.  For your own research you may need further details which can be

found in textbooks.  To carry out the tests, the computer package MINITAB (available on

the university network) is probably the easiest one for beginners to use.

61 MSOR Connections 16(2) – journals.gre.ac.uk



Descriptive Statistics and Simple Inferences 

1. Purpose.    To describe a set of data, and then to make inferences about the population from

which the sample of data comes.

2. Data.    Measurements for a number of cases or items or subjects; a single group.

3. Null hypothesis.    Not applicable.

4. Test statistic.    Not applicable, but Student's t is used for calculating confidence limits.

5. Degrees of freedom.    For a sample of n cases, df = n–1.

6. Assumptions.    Data from a random and independent sample of the population, if making

inferences about the population.  Measurements Normally distributed if using confidence

limits of the observations (Normal distribution not necessary if using confidence limits of

the mean and sample size larger than ten).

7. Example.   Weights of a cohort of salmon caught on migration shown in a frequency

distribution, and with descriptive statistics and simple inferential statistics.  In the graph,

classes are 135.0–139.9 g, 140.0–144.9 g, and so on.

Descriptive statistics 

n = 48 

Mean  174.0 g 

Median  174.0 g 

Modal class  170–175 g 

Standard deviation  11.500 g 

Range  136–196 g 

Coefficient of variation 

(SD/mean)  0.066092 or 

6.61% 

Frequency distribution 

Simple inferential statistics 

Standard error  1.6599 g 

df = 47 

Value of t  2.021 

95% confidence limits  170.6–177.4 g (using t for 40 df, the closest value at hand) 

Statement of results.  The mean weight of salmon was 174.0 g (SD 11.500 g, n = 48; 95% 

confidence limits of the mean 170.6–177.4 g). 

8. Variations and elaborations.   Measures of skewness (asymmetry, especially in the tails)

and kurtosis (thickness of the tails) can describe a distribution further in terms of departure

from Normality.  There are other distributions, e.g. Poisson, binomial, which can also be

described by mean and standard deviation.

9. Equivalent non-parametric test.    The median is a measure of central tendency that is

obtained from the ranks so is non-parametric; quartiles and interquartile range, or use of

centiles, are non-parametric measures of spread of a distribution.
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The Chi-squared Test 

1. Purpose.    To look for association between categories, cross-classified into groups.

2. Data.    Counts of occurrence in the groups, in a cross-classified table of c columns and r

rows for the counts (not including marginal columns and rows for descriptors or totals).

3. Null hypothesis.    No association between categories; cases or items or subjects occur in

the groups independently of the categories.

4. Test statistic.    Chi-squared, χ2.

5. Degrees of freedom.    For cross-classified table of c columns and r rows, df = (c – 1) ×

(r – 1).

6. Assumptions.    Data from a random and independent sample of the population where

factors affecting classification into categories acted uniformly (no identifiable sub-groups

where the factors acted differently).

7. Example.   Are handedness and sex associated?  The data are numbers in each group

classified by handedness and sex, from undergraduates taking APS240 in October 1993.

Sex 
Male Female | Total 

Left 10 7 | 17 
Handedness | 

Right 39 63 | 102 
|             _ 
| 

Total 49 70 | 119 

2 × 2 contingency table; df = 1 

Chi-squared (χ2) = 2.550 

P = 0.110, NS 

Statement of results.   Although the percentage of females that is left-handed (10%) is 

lower than for males (20%), in a set of data of this size (119 individuals) handedness and 

sex are not associated, they occur independently (χ2 = 2.550, 1 degree of freedom, P = 

0.110). 

8. Variations and elaborations.   If counts are low, especially expected count (see details of

method in textbooks) below 5, then beware of modifications (e.g. Yates's correction) to

take account of this.  The version of the test outlined above is the contingency test.  Another

version is the goodness-of-fit test where instead of a null hypothesis of no association there

is a null hypothesis to test particular frequencies in each group.  This hypothesis may come

from theory or previous experience.  The data are organized in a table with the actual counts

in the groups as one column (or row) and the expected counts (from the hypothesis of the

frequency in each group) as another column (or row).  The degrees of freedom are the

number of groups minus one.

9. Equivalent non-parametric test.    Not applicable: the chi-squared test is a

non-parametric test.
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Correlation 

1. Purpose.    To look for association (linear correlation) between two measured attributes

(Pearson's correlation).

2. Data.    Two measurements from each case or item or subject, that can be plotted on a

scatter graph (does not matter for the statistics which measurement is x).  Always plot the

graph, even if only a sketch.

3. Null hypothesis.    No (straight-line) association between the two measurements; the points

on the graph are a random cloud or occur in a horizontal or vertical line.

4. Test statistic.    The correlation coefficient, r, measures the strength of association,

between 0 for no association to –1 for perfect negative association, to +1 for perfect

positive association.  Test of significance is usually based on Student's t-test, and tables of

critical values of r are available for direct assessment.

5. Degrees of freedom.    For sample of n cases, df = n–2.  Note that there are n cases (or

items or subjects), each case with two numbers.

6. Assumptions.    Data from a random and independent sample of the population, where

there is an underlying straight-line relationship between the measurements.  The

measurements are distributed bivariate Normally.

7. Example.   Scatter graph of sunshine and rainfall recorded at Sheffield (monthly means for

the period 1981–2010), and the correlation between them.

Statement of results.  There is a moderately strong correlation (r = –0.699) between 

monthly totals of rainfall and sunshine; the correlation is significant (10 degrees of freedom, 

P = 0.0115).  It is a negative correlation, i.e. high sunshine tends to be associated with low 

rainfall. 

8. Variations and elaborations.   None: correlation is a simple and fairly crude technique.  If

there is a statistically significant correlation then it may prompt further investigation and

gathering of data, for example to predict one measurement from the other using regression.

9. Equivalent non-parametric test.    There are two methods of correlation when the data are

ordinal: Spearman's and Kendall's rank correlations.

64 MSOR Connections 16(2) – journals.gre.ac.uk



The t-Test 

1. Purpose.    To compare the means of two groups.

2. Data.    Measurements for the cases or items or subjects in the two groups.

3. Null hypothesis.    No difference between the means of the two groups; the groups are

samples drawn from the same population.

4. Test statistic.    Student's t.

5. Degrees of freedom.    For two groups of nA and nB cases, df = nA + nB – 2.

6. Assumptions.    Data from random and independent samples of the populations, where the

measurements have underlying Normal distributions which are equal in variability.

7. Example.    Is the distance between the eyes different in males and females?  The data are

the interpupillary distances measured when setting up a binocular microscope by

undergraduates taking APS116 in October 2005.

Summary of data. 

Males Females 

Number 53 90 

Mean 62.36 mm 59.47 mm 

Standard deviation 3.470 mm 3.032 mm 

nA = 53, nB = 90; df = 141 

Student's t = 5.22 

P = 0.00000063, *** 

Statement of results.  The difference in interpupillary distance is statistically highly 

significant (t = 5.22, 141 degrees of freedom, P = 0.00000063; two-sample t-test, 

homogeneous variances).  On average the interpupillary distance is 4.6% smaller in 

females than in males.  The difference is 2.89 mm with 95% confidence limits of 1.79 to 

3.99 mm. 

8. Variations and elaborations.    For marked unequal variability of the two groups,

especially with small groups or unequal size groups, then use a t-test designed for this,

known as separate variances t-test, Behrens–Fisher test, Welch test or

Satterthwaite-adjusted t-test,  These tests are best carried out with a computer package.

The confidence limits for the difference between the means can also be calculated, to 

examine practical significance (and put more emphasis on the size of effects than on 

hypothesis testing).  If the confidence limits include zero then the difference will not be 

statistically significant (at the same probability, e.g. P = 0.05 for 95% confidence interval). 

9. Equivalent non-parametric test.    The non-parametric test that is analogous to the t-test is

called the Mann–Whitney test or U-test or Wilcoxon test or Mann–Whitney–Wilcoxon test.
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Analysis of Variance (ANOVAR) 

1. Purpose.    To compare the means of two or more groups.

2. Data.    Measurements for the cases or items or subjects in the groups.

3. Null hypothesis.    No difference between the means of the groups; the groups are samples

drawn from the same population.

4. Test statistic.    Variance ratio, F.

5. Degrees of freedom.    The variance ratio has two degrees of freedom, first for the

hypothesis being tested and second for the residual variation, spoken, for example, as "5 on

26 degrees of freedom".  The first df is the number of groups minus one in the initial

analysis, or the number of means being compared minus one in further analyses.  The

residual df is calculated from the ANOVAR table; in the simplest example of k groups each

with n cases, residual df = k(n – 1).

6. Assumptions.    Data from random and independent samples of the populations, where the

measurements have underlying Normal distributions which are equal in variability

(technically, the residuals (observation minus treatment mean) must come from one

Normal distribution).  Differences between group means arise from a small amount added

or subtracted, not so large as to be multiplied or divided by a (mathematical) factor.

7. Example.    Results from an experiment on growing potatoes with different amounts of

fertilizer (imaginary data).

Table of treatment means 
Fertilizer (kg/ha) 0 50 100 150 200 
Yield (t/ha) 20.5 29.5 37.0 39.5 39.0 

Table of Analysis of Variance 
Degrees 
     of Sum-of- Mean Value 

Source freedom squares square of F Probability 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Treatments 4 1050.80 262.70 5.53 0.0061  ** 
Residual 15 713.00 47.53 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Total 19 1763.80 

Statement of results.  There is a very significant effect of fertilizer on yield: yield increases 

with increasing amount of fertilizer applied, especially at lower rates of application (F = 

5.53, 4 on 15 degrees of freedom, P = 0.0061). 

8. Variations and elaborations.    Analysis of variance is a very general technique which has

many variants for different sorts of experiments and different situations.  The aim is always

to calculate the background, uninteresting variation correctly and compare it with the

variation for which there is an explanation (experimental treatments or groups identified in

a survey).

9. Equivalent non-parametric test.    The non-parametric tests that are analogous to

ANOVAR are the Kruskal–Wallis test and the Friedmann test (each for particular versions

of ANOVAR).
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Regression 

1. Purpose.    To predict one measured attribute from another by fitting a line to the data and using

the equation of the line.

2. Data.    Two measurements from each case or item or subject, that can be plotted on a scatter

graph with the measurement to be predicted (response or dependent variable) as y.  Always plot

the graph, even if only a sketch.

3. Null hypothesis.    The slope of the fitted line is zero, i.e. the predicted y value will be constant

whatever the value of x.

4. Test statistic.    Variance ratio, F, for the statistical significance of the regression.  The

coefficient of determination, r2, indicates the proportion of variation explained by the regression.

5. Degrees of freedom.    The variance ratio has two degrees of freedom, first for the regression,

always one df, and second for the residual variation, spoken, for example, as "1 on 26 degrees of

freedom".  The residual df for a regression is n–2, where n is the number of cases (or items or

subjects) with paired values (x and y).

6. Assumptions.    Data from a random and independent sample of the population, where there is

an underlying straight-line relationship between the measurements (in the ranges of x and y used;

extrapolation beyond these ranges is unreliable).  The x values known without error so that all

the variability in the point on the graph is in the y value.  The variability of the y values is

homogeneous (the same all along the x-axis, between smallest and largest value of x) and

Normally distributed.

7. Example.    Regression of score of reading comprehension when aged 16 years on score of

general verbal ability when aged 11 years, for 30 children drawn at random from the National

Child Development Study (children born in 1958).

Statement of results.  The regression of reading comprehension (age 16) on verbal ability (age 11) 

is highly significant (F = 22.57, 1 on 28 degrees of freedom, P = 0.0000548).  The reading 

comprehension (age 16) can be predicted from the equation y = 12.3 + 0.548x where y is the 

score for reading comprehension (age 16) and x is the score for general verbal ability (age 11). 

8. Variations and elaborations.    This is simple regression for fitting a straight line.  The method

can be elaborated for curves of all sorts, and for more than one x value being used to predict y

(multiple regression).

9. Equivalent non-parametric test.    There are non-parametric methods for regression but no

simple equivalent for the straight-line regression used here.
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Appendix A 

Background information 

A1. Degrees of freedom.    Even statisticians have trouble with this term.  Brian Everitt (The 

Cambridge Dictionary of Statistics, 1998) starts his technical definition: "an elusive 

concept that occurs throughout statistics"!  The degrees of freedom indicates how many 

independent pieces of information there are in the data, or how many opportunities there 

are for the data to vary.  Loosely speaking, the number of degrees of freedom is a method 

of saying how large the set of data is, in a way that is relevant to the particular statistical 

test.  We are calculating the probability of getting a certain result (our result or a more 

extreme one) if the null hypothesis is true.  Clearly this probability will depend in part on 

the size of the set of data, in other words, on how many possibilities there are of obtaining 

this result.  The larger the set of data, the more possibilities there are. 

A2. Frequentist and Bayesian statistics.    The classical statistics that we are using is called 

frequentist because it uses the overall frequency of events as the probability of a single 

event occurring.  That is why the explanations have phrases such as "if we sampled 

repeatedly" or "if we performed this experiment many times" or "in the long run".  It leads 

to the results of statistic tests being couched in what seems convoluted terms of the 

probability of this set of data (or one more extreme) occurring if a particular hypothesis 

was true.  That is why it is not possible to assign a probability to any particular hypothesis, 

only to the data given the null hypothesis. 

An alternative approach is to take the set of data as given and find the probability of the 

hypothesis.  This is the province of Bayesian statistics which is slowly becoming more 

widely used in many research fields.  You need to be aware of the Bayesian approach 

because it may turn up in research that you are reading, or you may find that you need to 

learn about it and use it yourself.  Bayesian statistics requires a deeper knowledge of 

probability and mathematical logic. 

The main reason for knowing of the difference between frequentist and Bayesian 

statistics is that it helps to understand the exact meaning of the probability produced in 

statistical testing (§4).  Frequentist (classical) statistics provides the probability of 

obtaining data like the results (or more extreme) given the null hypothesis (usually that 

there is no difference between means, or no association).  In contrast, Bayesian statistics 

provides the probability of the hypothesis given the data found. 
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Appendix B 

Using statistical tables 

B1. From probability to significance.    Computer packages analysing data provide an exact 

figure for the probability associated with the calculated test statistic.  You can interpret it as a 

level of statistical significance using Figure 1.  You need to think carefully about the range in 

which your value of probability falls (P ≥ 0.05, or P < 0.05 but ≥ 0.01, and so on).  Give the 

exact probability figure when writing the conclusion of the statistical test, whenever you can, 

because it is part of the evidence for your conclusion (see §13).  Rounding off to three 

significant figures is a suitable measure of precision for these probabilities. 

If you calculate the test statistic by hand and calculator then you can use statistical tables 

to find the range of probability associated with the value—see below.  Once you have the 

range of probability, it is easy to interpret this as statistical significance using Figure 1.  

Alternatively, there are resources on websites which will calculate the exact probability given 

your value of the test statistic and one or two other inputs, typically degrees of freedom. 

There are many of these resources and currently I prefer the one at 

http://danielsoper.com/statscalc3 (look for "Probability (p-Values)" and then for the relevant 

test statistic).  Be sceptical: always check one of these resources with a couple of entries 

where you know the answer from a table of critical values.  For instance, suppose you use 

Daniel Soper's p-Value Calculator for a Student t-Test.  Try entering 9 degrees of freedom and 

t = 2.262 (from a t-table, column for P = 0.05).  Two answers are produced, one-tailed and 

two-tailed, and the two-tailed value of probability is 0.05001285 which is close to the 0.05 

that you are expecting.  (We have not used one-tailed statistics in this module—consult 

statistical textbooks if you wish to find out more).  Now we have confidence in the resource, 

and realize that we will need to use the two-tailed value.  For this reason—to check 

web-resources—knowing how to use statistical tables is still a valuable skill, so read below. 

B2. How to use a table of critical values.    There is a separate table of critical values (as they are 

called) for each test statistic, often found at the back of statistical textbooks.  Beware of 

statistical tables obtained from websites because they may not be the common ones that you 

need but more specialized tables.  It is safer to use those at the back of statistical textbooks.  In 

particular, you need the table for two-tailed t-tests, not one-tailed, for work in this module. 

Start with the column (sometimes a separate table) for P = 0.05.  Enter the table using the 

number of degrees of freedom for the test statistic.  (Sometimes df is denoted by ν, the Greek 

letter nu, lower case.  It looks remarkably like a letter v but is actually nu; see here in larger 

size: ν (nu) versus v.)  If the calculated value is larger than the tabulated value (for a given P

value and degrees of freedom) then the result is declared statistically significant, at the stated 

probability.  If significant with the P = 0.05 column, you can proceed to the next column for P 

= 0.01 and then to P = 0.001, to find the lowest probability for your calculated test statistic.  

This probably sounds obscure but once you have used statistical tables a few times you will 

get the hang of it. 
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B3. Worked example of using a statistical table.    Suppose you have a correlation coefficient, r, 

of 0.756 with 12 degrees of freedom (from the 14 observations, since df = n–2 for correlation).  

A portion of the statistical table for the correlation coefficient is shown in Table B1.  Find the 

row for 12 degrees of freedom.  The critical value tabulated for P = 0.05 is 0.532 and the 

calculated value (0.756) is much larger than this so we have significance at least at P < 0.05.  

We go further, in this table literally further along the row for 12 degrees of freedom: the 

critical value for P = 0.01 is 0.661, again a hit; but at P = 0.001 the table has 0.780 and the 

calculated value does not exceed this.  So the probability associated with this value of r (12 df) 

is P < 0.01 (but not P < 0.001) so you can claim that it is very significant, and code as ** (from 

Figure 1). 

Table B1.  Part of the table of critical values for the correlation coefficient, r.  Extracted from 

Parker, R.E. (1979) Introductory Statistics for Biology, London (Arnold). 

Degrees of Probability 
freedom 0.05 0.01 0.001 

1 0.99692 0.999877 0.99999877 
2 0.950 0.990 0.999 
… 
… 

11 0.553 0.684 0.801 
12 0.532 0.661 0.780 
13 0.514 0.641 0.760 
… 
… 

90 0.205 0.267 0.338 
100 0.195 0.254 0.321 
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