
MSOR Connections 17(1) – journals.gre.ac.uk 37

CASE STUDY

Developing STACK practice questions for the Mathematics
Masters Programme at the Open University
Grahame Erskine, School of Mathematics & Statistics, The Open University, Milton Keynes, UK. Email:
Grahame.Erskine@open.ac.uk
Ben Mestel, School of Mathematics & Statistics, The Open University, Milton Keynes, UK. Email:
Ben.Mestel@open.ac.uk

Abstract
The design and implementation of Masters level e-assessment in STACK is described for the introductory
module M820 Calculus of Variations and Advanced Calculus in the Open University’s Masters
Programme in Mathematics. Some basic design principles are described and illustrated for an online
practice quiz on the use of the Jacobi equation to classify stationary paths.

Keywords: e-assessment, STACK, design, implementation.

1. Introduction
Over the past 15 years there has been an explosion in the use of computer-based/online assessment in
university mathematics, with several systems pioneered by UK practitioners. In addition to commercial
systems such as Maple TA (Maplesoft.com, 2018), we have seen, for example, Maths E.G. at Brunel
(Mathcentre.ac.uk, 2018), Dewis at UWE (Dewisprod.uwe.ac.uk, 2018), Numbas at Newcastle
(Numbas.org.uk, 2018), and STACK (Stack.ed.ac.uk, 2018), originally at the University of Birmingham,
but now adopted by several institutions, including The Open University (OU), where it has been
demonstrated that STACK can work well at large scales1 (Heacademy.ac.uk, 2018). See Figure 1 for
the implementation of STACK at the OU.

Despite the theoretical basis, success, and growing adoption of these e-assessment systems in
Mathematics (Sangwin, 2013), their use has largely been confined to undergraduate mathematics,
typically at levels 1 and 2. Anecdotally, at least, there has been a feeling that these systems would be
less useful for higher-level mathematics and that they are ill equipped to deal with mathematical
argument and proof, especially given the wide variety of student responses and approaches. Such
worries are understandable and the jury is still out on whether e-assessment can be effectively
implemented at level 3 and above.

However, all mathematics involves some degree of calculation and students benefit from practice in the
necessary techniques, even if such calculation is supplemented by nuanced argument, especially at
higher levels. So, when we decided to implement practice questions for the Open University’s MSc
module M820 Calculus of Variations and Advanced Calculus, we were confident that we could devise
questions that would be of genuine help to students. We also knew several formative e-assessment
questions had already been successfully implemented by our colleagues on the module M823 Analytic
Number Theory 1, the other entry module to the MSc programme. Indeed, if they had developed STACK
questions for pure mathematics, then surely it would be straightforward to do so in the more conventional
calculational world of calculus of variations.

Hence, armed with a grant from the university’s programme to aid student retention, we set out to develop
six significant STACK exercises to support students on M820 to develop the standard techniques in
these key areas of the theory:

38 MSOR Connections 17(1) – journals.gre.ac.uk

1. Solution of the Euler-Lagrange differential equation for quadratic functionals to obtain the
stationary path.

2. Solution of variational problems through the first-integral, for those functionals permitting such an
approach.

3. Local classification of stationary paths of functionals into minima, maxima and saddle points,
through the analysis of the Jacobi differential equation.

4. Calculation of the Noether invariants (first-integrals) for functionals invariant under a scale change
in the variables.

5. Diagonalisation of quadratic functionals involving two dependent variables, thereby allowing the
stationary paths to be calculated by the solution of two independent variational problems.

6. The use of the Rayleigh-Ritz method to find an upper bound for the least eigenvalue of a Sturm-
Liouville problem.

Each of these problems involves fundamental techniques that might be included in the end-of-module
examination, on which assessment for the module is based. In this article we focus on the third technique,
on the Jacobi equation.

2. Authoring online practice quizzes
Our first task was to set the overall design of the e-assessment questions. In this we were fortunate that
the OU has an extensive history of e-assessment in mathematics, from computer-marked ‘objective
testing’ (i.e. multiple choice), in which the university was a pioneer in the 1970s/1980s; through an
elegant but now largely superseded Java-based system OpenMark (now open-source but non-
maintained) (Open.ac.uk, 2018), (Butcher, 2008); to widespread implementation of STACK as part of an
enhanced Moodle Quiz Engine (Hunt, 2012). Since both of us were familiar with STACK and had
authored STACK questions in the past (albeit at Levels 1 and 2), the choice of system was clear. Since
the individual topics involved multiple stages of calculations, we opted for each topic to be a separate
Moodle quiz, with each calculation stage a separate question, each question linked so that they had the
same instance of each random parameter2. This was done so that students could benefit from feedback
on early parts of the calculation before tackling the later, harder parts.

We adopted the following modus operandi for developing the STACK questions.

1. Ben (as M820 Module Team Chair3) scoped out the possible questions which he felt were
appropriate for STACK implementation, taking into account the importance of the material and
the prospect for tractable, randomised questions which illustrated the theory and provided
multiple practice examples without involving the student in unnecessary algebraic and arithmetic
complexity.

2. After an initial discussion, Grahame (as former M820 student and professional programmer)
then took the outline questions and implemented them in STACK, ironing out the multitude of
niggles and problems.

3. Ben then checked and commented on the implementation, suggesting amendments, usually
on wording.

4. A final discussion finalised the implementation before moving on to the next topic.

MSOR Connections 17(1) – journals.gre.ac.uk 39

Figure 21. Implementation of STACK in the OU’s Moodle-based Virtual Learning
Environment. The example shown is the first part of a five-part practice quiz on the use of

the Jacobi equation in the calculus of variations.

3. The calculus of variations and the Jacobi equation
Recall that the calculus of variations, dating from the 17th Century, studies extremal paths of functionals
of the form ∫ 𝑑𝑑𝑑𝑑 𝐹𝐹(𝑑𝑑,𝑦𝑦,𝑦𝑦′)𝑏𝑏

𝑎𝑎 (and its many generalisations) together with assorted boundary conditions
and constraints.

The candidate extremals are typically given by stationary paths, which are solutions of the Euler-
Lagrange equation 𝑑𝑑

𝑑𝑑𝑑𝑑
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦′
� − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦
= 0. The theory, with its generalisations to higher dimensions and

higher derivatives, has applications in many fields including physics (where it forms the basis of many
modern physical theories), biology, control engineering, economics and chemistry. The modern theory
incorporates singular and infinite functionals, but the focus of the M820 module is on hands-on calculation
rather than on abstraction. See Gel’fand et al. (2000) and MacCluer (2012) for readable introductions,
two of a plethora of excellent textbooks on this classical area of mathematics.

To provide the background for our case study, we now outline the use of the Jacobi equation to classify
stationary paths.

4. Example: the Jacobi equation
Once the stationary paths have been calculated, the next step is to classify them into local maxima, local
minima and saddles. Unfortunately, this is often a difficult task. One approach, a generalisation of the
second derivative classification of stationary points of real functions, is to solve the Jacobi differential
equation initial value problem

𝑑𝑑
𝑑𝑑𝑑𝑑

� 𝑃𝑃
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 � –𝑄𝑄 𝑑𝑑 = 0, 𝑑𝑑(𝑎𝑎) = 0, 𝑑𝑑′(𝑎𝑎) = 1,

40 MSOR Connections 17(1) – journals.gre.ac.uk

where 𝑃𝑃 = 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦′2

, and 𝑄𝑄 = 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦2

− 𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦𝜕𝜕𝑦𝑦′

�, evaluated on the stationary path 𝑦𝑦(𝑑𝑑). If 𝑑𝑑(𝑑𝑑) has no zeros
(“conjugate points” in the jargon) in the half-open interval (𝑎𝑎, 𝑏𝑏] then 𝑦𝑦(𝑑𝑑) is a local minimum if 𝑃𝑃 > 0 on
[𝑎𝑎, 𝑏𝑏]; a local maximum if 𝑃𝑃 < 0 on [𝑎𝑎, 𝑏𝑏]; and a saddle if 𝑃𝑃 changes sign on [𝑎𝑎, 𝑏𝑏]. Further analysis in
needed in other cases. Unfortunately, despite being a linear equation, the Jacobi equation is frequently
difficult to solve analytically. Therefore finding clean, tractable examples for students to practise the
method is a challenge for educators.

Our aim for an online practice exercise on the Jacobi equation was to present the students with a
functional, necessarily specialised in form, and to lead them through the solution of the Euler-Lagrange
equation to find the stationary path and to then classify the stationary path using Jacobi’s equation.

In order to reduce the calculations, we opted to work with a quadratic functional of the form

� 𝑑𝑑𝑑𝑑 (𝛼𝛼0 𝑑𝑑𝑚𝑚𝑦𝑦′2 + 𝛽𝛽0
𝑏𝑏

𝑎𝑎
𝑑𝑑𝑚𝑚−2𝑦𝑦2) ,

defined on the closed interval [𝑎𝑎, 𝑏𝑏], with fixed end-point boundary conditions 𝑦𝑦(𝑎𝑎) = 𝐴𝐴, 𝑦𝑦(𝑏𝑏) = 𝐵𝐵,
where 𝐴𝐴, 𝐵𝐵 are constants, chosen to reduce the algebraic complexity of the solution. The constants 𝛼𝛼0,
𝛽𝛽0 and 𝑚𝑚 were also specialised as described below.

This type of functional has two distinct advantages. First, for functionals quadratic in 𝑦𝑦′ and 𝑦𝑦, the Euler-
Lagrange equation and the Jacobi equation turn out to be the same equation, with the important
difference that for the Euler-Lagrange equation there are boundary conditions at the two endpoints 𝑎𝑎 and
𝑏𝑏, while the Jacobi equation is an initial value problem.

Second, for this type of functional, the Jacobi equation is a second-order Euler differential equation which
can be readily solved by converting to a homogeneous constant-coefficient differential equation.
Specifically, the Jacobi equation is

𝐴𝐴2𝑑𝑑2
𝑑𝑑2𝑑𝑑
𝑑𝑑𝑑𝑑2

+ 𝐴𝐴1𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 + 𝐴𝐴0𝑑𝑑 = 0, 𝑑𝑑(𝑎𝑎) = 0, 𝑑𝑑′(𝑎𝑎) = 1,

where 𝐴𝐴2 = 𝛼𝛼0, 𝐴𝐴1 = 𝑚𝑚𝛼𝛼0, and 𝐴𝐴0 = −𝛽𝛽0. The usual transformation 𝑑𝑑 = 𝑒𝑒𝑡𝑡, leads to

𝐴𝐴2
𝑑𝑑2𝑑𝑑
𝑑𝑑𝑡𝑡2

+ (𝐴𝐴1 − 𝐴𝐴2)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

 + 𝐴𝐴0𝑑𝑑 = 0, 𝑑𝑑(log𝑎𝑎) = 0, 𝑑𝑑′(log𝑎𝑎) = 1.

Since our principal aim is to provide practice in the use of the Jacobi equation to classify stationary paths,
we look for choices for which the classification varies with the solution of this initial value problem. Thus
we choose the auxiliary equation to reduce to the form 𝜆𝜆2 − 2𝜌𝜌𝜆𝜆 + 𝜌𝜌2 + 𝜔𝜔2 = 0, where 𝜌𝜌 and 𝜔𝜔 are ‘nice’
constants with 𝜔𝜔 ≥ 0 and 𝜌𝜌 and 𝜔𝜔 not both zero. The solution (in terms of 𝑑𝑑) is 𝑑𝑑(𝑑𝑑) =

�𝑎𝑎
𝜔𝜔
� �𝑑𝑑

𝑎𝑎
�
𝜌𝜌

sin(𝜔𝜔 log(𝑑𝑑/𝑎𝑎)) for 𝜔𝜔 > 0 and 𝑑𝑑(𝑑𝑑) = 𝑎𝑎 �𝑑𝑑
𝑎𝑎
�
𝜌𝜌

log(𝑑𝑑/𝑎𝑎) for 𝜔𝜔 = 0.

At this point several things are apparent. First, to avoid singular behaviour, we must take 0 < 𝑎𝑎 < 𝑏𝑏.
Second, although 𝜔𝜔 = 0 is an important special case from a pedagogical perspective, its inclusion would
complicate the implementation, so that it would be better to restrict to 𝜔𝜔 > 0 in the first instance, leaving
the case 𝜔𝜔 = 0 for future development.4 Third, the solution for 𝑎𝑎 ≠ 1 is significantly more complex so that
a restriction to 𝑎𝑎 = 1 would simplify computations for the students, at the risk of not providing practice in
the more complex cases. Compromises such as these are frequent in e-assesment and the trick is to
balance the pedagogy and the programming.

MSOR Connections 17(1) – journals.gre.ac.uk 41

So, restricting to 𝑎𝑎 = 1 and 𝜔𝜔 > 0, gives 𝑑𝑑(𝑑𝑑) = 1
𝜔𝜔
𝑑𝑑𝜌𝜌 sin(𝜔𝜔 log 𝑑𝑑) and there are zeros of 𝑑𝑑(𝑑𝑑) in (1,𝑏𝑏] if

and only if 𝜔𝜔 log 𝑏𝑏 ≥ 𝜋𝜋. By varying the choice of 𝜔𝜔 and 𝑏𝑏, we are able to flip between the two cases:
there are no zeros and the Jacobi test may be applied, and there is at least one zero in (1,𝑏𝑏] and the
Jacobi test fails. In the first case, the stationary path is a minimum if 𝑃𝑃(𝑑𝑑) = 2𝛼𝛼0 > 0 and is a maximum
if 𝑃𝑃(𝑑𝑑) = 2𝛼𝛼0 < 0. Note that for this functional 𝑃𝑃 is of fixed sign (for 𝛼𝛼0 ≠ 0) so the stationary path is either
a local maximum or a local minimum.

It follows that we can randomise the problem by making the following choices:

a. 𝜔𝜔, a random small positive integer, e.g., in the range 1..3
b. 𝑚𝑚, a random integer, e.g., in the range -1..5 excluding 0
c. 𝛼𝛼0, a random integer, e.g., in the range -3..3 excluding 0
d. 𝑏𝑏, a random integer greater than 1, e.g., in the range 2..9

and setting 𝐴𝐴2 = 𝛼𝛼0, 𝐴𝐴1 = 𝑚𝑚 𝛼𝛼0, 𝐴𝐴0 = 𝛼𝛼0
(𝑚𝑚−1)2+4 𝜔𝜔2

4
, 𝜌𝜌 = 1−𝑚𝑚

2
, 𝛽𝛽0 = −𝐴𝐴0.

However, these randomisations may not lead to a desired distribution of the three cases: minimum,
maximum or test failure (conjugate points), and so it was necessary to restrict 𝑏𝑏 further depending on the
other parameters, randomising to some extent the choice of outcome, to ensure that the successful
cases occurred sufficiently often. Certainly, development is an iterative process.

Now, the Euler-Lagrange equation is

𝐴𝐴2𝑑𝑑2
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑑𝑑2

+ 𝐴𝐴1𝑑𝑑
𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑

 + 𝐴𝐴0𝑦𝑦 = 0, 𝑦𝑦(𝑎𝑎) = 𝐴𝐴, 𝑦𝑦(𝑏𝑏) = 𝐵𝐵,

Choosing, for simplicity, 𝐴𝐴 = 0 and then setting 𝐵𝐵 = 𝑘𝑘𝑏𝑏𝜌𝜌 sin𝜔𝜔 log𝑏𝑏, where 𝑘𝑘 is a small random positive
integer, gives a simple formula for the stationary path 𝑦𝑦(𝑑𝑑) = 𝑘𝑘 𝑑𝑑𝜌𝜌 sin(𝜔𝜔 log𝑑𝑑).

In our implementation for the students, the problem was split into five sequential questions with the same
instance of the randomisation (with extensive feedback, as shown in Figure 2):

1. Calculate the Euler-Lagrange equation;
2. Transform the resulting Euler equation using the transformation 𝑑𝑑 = 𝑒𝑒𝑡𝑡;
3. Solve the resulting constant-coefficient differential equation and substitute back to get the

stationary path;
4. Calculate 𝑃𝑃(𝑑𝑑) and 𝑄𝑄(𝑑𝑑) and hence the Jacobi equation;
5. Solve the Jacobi initial value problem to find 𝑑𝑑(𝑑𝑑), investigate the existence of conjugate points

and hence, if possible, classify the stationary path.

A great strength of STACK is the ability to tailor feedback to student input. At this development stage,
our use of this facility was confined to providing hints for incorrect tries and to providing feedback if an
expression is not in the right variables, if a correct answer can be simplified, if the appropriate differential
equation or boundary/initial value is not satisfied, and if the final classification of the stationary path is
incorrect.

42 MSOR Connections 17(1) – journals.gre.ac.uk

Figure 2. Feedback giving a worked solution for a correct answer to the final part of the
Jacobi equation quiz. Although not shown here, STACK facilitates feedback tailored to a

student’s individual input.

5. Our experience of authoring questions at MSc level
In this section we outline our experiences of authoring in STACK at the MSc level in a series of vignettes.

1. Two developers working together. Having a fairly complete outline of each question before
embarking on the development was helpful. One benefit is that two people worked through the
details of the questions, one at the pen-and-paper specification stage and the other at the STACK
implementation. Given the complexity of the material, this much reduced the probability of major
errors in the question logic. As it turned out, most of the amendments made in the later stages
were presentational – clarifying wording and so on.

One thing to be aware of when tackling questions of this complexity is that multi-part questions,
where students are led through the question in well-defined stages, bring added work to the
development process to keep all the parts in sync. So estimation is key – when the question
outline is 20 handwritten pages it is likely that the development effort required is substantial.

2. Avoiding arithmetically and algebraically complex questions. One aim was to develop ‘clean’

questions which were not overly algebraically and arithmetically complex. From the experience
of setting exam questions over the years, there was a belief that it was important to start with
clean answers and to work backwards to generate clean questions. In previous projects, attempts

MSOR Connections 17(1) – journals.gre.ac.uk 43

have been made to keep the answers numerically reasonable, since students may be put off by
the need to input answers involving very large numbers, or odd-looking fractions, square roots
and so on. In this case the problem was compounded by the multi-part nature of most of the
questions.

It turned out that on a couple of the questions the best strategy was to pick “nice” values for
intermediate answers rather than the final answer. Working backwards then gave reasonable
values for the question parameters, and then the final answers were not too awkward because
the intermediate values had been chosen to be clean.

In designing the quizzes, we were conscious both of the need for tractable examples with clean
arithmetic/algebra so that students focus on the higher-level skills and for realistic examples of
sufficient complexity to give students practice in a range of situations. Certain of our choices
leaned heavily towards arithmetic/algebraic simplicity (leaving more complicated cases for future
development), but we were also mindful of the need for sufficiently many randomised parameters
to span a large enough slice of the space of possible questions. Ultimately, it must be a matter of
judgement. Perhaps, in retrospect, restricting to 𝑎𝑎 = 1 was too limiting, although a wide variety of
questions was nonetheless available to the students.

3. Skill set needed to develop STACK questions. When developing questions like these one is
drawing on skills and knowledge from previous experience. Having some background in software
development is helpful, but almost more important is the mathematical intuition. As a former
student of this module, Grahame was able to think from the student’s perspective about the logical
steps required to develop the solution.

It is more or less essential when developing these types of question that you should understand
the material in enough detail to be able to work through the solution. Just as important is the
ability to think about what can go wrong. What might confuse a student and how can I word the
question or solution to be as helpful as possible? What errors are likely and can these be detected
to give more helpful feedback than a generic “incorrect answer, try again” response?

4. The most challenging problem during implementation. These questions were at a level of
complexity beyond anything we’d done before, so the usual minor issues were magnified. Often
the Maxima system underlying STACK will decide on how to order the terms in a computed
expression, and you have limited control over that. So sometimes you’re fighting the system a
little and need specific LaTeX for formatting. The nature of the subject is that complex expressions
involving partial derivatives and subscripted variables are common, so the LaTeX formatting job
is non-trivial.

Probably the most awkward part was to come up with the input values which led to reasonable
answers. In addition to picking good values for intermediate results, sometimes the only way to
do that was the brute-force method of running all possible question values in a reasonable range
through a model of the question logic built in Maxima, and selecting those parameters which
result in sensible results.

5. Advice to others contemplating writing e-assessment using the STACK system. The
benefits of STACK for this kind of mathematics, especially involving algebraic manipulation and
calculus, are considerable. There is good material available for learning the basics of STACK,
aimed primarily at developing questions in the early undergraduate range. Gaining experience of
the system on questions at this level would be sensible before embarking on developing the more
advanced questions in our project.

44 MSOR Connections 17(1) – journals.gre.ac.uk

One thing that worked very well in our case, and which we recommend, is the detailed outline of
the questions that we had on paper before embarking on the actual build on the system. If you
try to develop the question on the fly, then things will go wrong, especially since many of our
questions had four or five linked parts. Planning is key!

6. Conclusion and some general principles
The six online quizzes were completed in a six-week period in December 2017 – January 2018, each
taking about 4 person-days from design to implementation, including checking. The M820 students were
offered the six practice quizzes as a tool for learning and for examination revision and many used them
for those purposes. Each quiz has been accessed over 220 times and by at least 85% of the 93 students
taking the examination, but a detailed analysis of their effectiveness, and of their reception by the
students, will be made once the module results are known.

The focus in this article has been on the design and implementation phase and on our experience at
higher-level mathematics. Certainly, we have found the creation of these online quizzes to have been
both enjoyable and intellectually stimulating, albeit with a hefty dose of frustration when the system
(usually Maxima) did not work entirely as expected.

We end with some pointers to those who are looking to design their own e-assessment material, whether
for formative or summative assessment. These are naturally pretty high level and most have already
been embedded by mathematics and statistics educators as part of their normal day-to-day practice.

1. Start small and work up. It’s best not to start with the most general case, but to deal with a basic
case and add complexity afterwards, possibly as separate questions.

2. Avoid complicated answers. Use small integers/rationals where possible and avoid complicated
intermediate algebra and arithmetic, the bane of computer algebra systems generally.

3. Specify the solution and work backwards to problem, or, possibly, work backwards and forwards
from an intermediate step. Moreover, whenever you have an equation to solve (linear, differential,
algebraic) specify the solutions first and then derive the equation, not vice versa, and be prepared
to re-think your randomisation choices during development if the solutions are too complex.

4. Check the students’ answers directly, don’t try pattern matching with a model solution. The variety
of student answers far outstrips our own imagination!

5. Often the hardest part is formatting the solutions.
6. Select randomly from a set of good parameter choices, rather than randomise each parameter

independently.

7. References
Butcher, P., 2008. Online assessment at the Open University using open source software: Moodle,
OpenMark and more. In: Khandia, F. (ed.). Proceedings of the 12th CAA International Computer
Assisted Assessment Conference, 8th and 9th July 2008. Lougborough University, UK. pp. 65-78.
Available at: https://research.moodle.net/149/1/Butcher_P_final_formatted_n1_2.pdf [Accessed 12
June 2018].

Dewisprod.uwe.ac.uk., 2018. The Dewis e-Assessment System. Available at:
http://dewisprod.uwe.ac.uk/ [Accessed 6 June 2018].

Gelʹfand, I. M., Fomin, S. V. and Silverman R. A., 2000. Calculus of variations. Mineola, N.Y.: Dover
Publications.

MSOR Connections 17(1) – journals.gre.ac.uk 45

Heacademy.ac.uk., 2018. The Open University - STACK | Higher Education Academy. Collaborative
award for teaching excellence. Available at: https://www.heacademy.ac.uk/person/open-university-
stack [Accessed 6 June 2018].

Hunt, T., 2012. Computer-marked assessment in Moodle: Past, Present and Future. In: D. Whitelock et
al. (eds). Proceedings of the 2012 CAA International Computer Assisted Assessment Conference, 10th
– 11th July 2012, University of Southampton.

MacCluer, C. R., 2012. Calculus of variations: mechanics, control and other applications. Mineola, NY:
Dover Publications.

Maplesoft.com., 2018. Maple T.A. - Online Assessment System for STEM Courses - Maplesoft. [online]
Available at: https://www.maplesoft.com/products/Mapleta/ [Accessed 6 June 2018].

Mathcentre.ac.uk., 2018. Maths E.G. Available at: http://www.mathcentre.ac.uk:8081/mathseg/
[Accessed 6 June 2018].

Numbas.org.uk., 2018. Really versatile maths e-assessment | Numbas. Available at:
https://www.numbas.org.uk [Accessed 6 June 2018].

Open.ac.uk., 2018. OpenMark Examples. Available at: http://www.open.ac.uk/openmarkexamples/
[Accessed 12 June 2018].

Sangwin, C., 2013. Computer Aided Assessment of Mathematics. Oxford: Oxford University Press.

Stack.ed.ac.uk., 2018. STACK. [online] Available at: http://www.stack.ed.ac.uk [Accessed 6 June
2018].

1 STACK services over a million e-assessment questions annually at the OU.
2 The ability to serve multipart problems with consistent randomisations between the parts is a powerful feature
of the integration of STACK within the Moodle Quiz.
3 The Module Team Chair is the person in overall charge of the module and who leads the team of colleagues
(which includes the OU’s famed Tutors) who deliver the module to the students.
4 Alternatives and special cases are often best developed as separate STACK questions, leaving the random
selection of question type to Moodle.

	CASE STUDY
	1. Introduction
	2. Authoring online practice quizzes
	3. The calculus of variations and the Jacobi equation
	4. Example: the Jacobi equation
	5. Our experience of authoring questions at MSc level
	6. Conclusion and some general principles
	7. References

