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Editorial 

Peter Rowlett, Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, 
UK. Email: p.rowlett@shu.ac.uk. 
Matthew M. Jones, Design Engineering and Mathematics Department, Middlesex University, 
London, UK. Email: m.m.jones@mdx.ac.uk. (Guest editor) 
 
This special issue of MSOR Connections is based on contributions to a workshop, ‘Programming in 
the undergraduate mathematics curriculum’, which took place at Middlesex University on 27th June 
2019, and other submissions received on the same theme.  
 
The Bond Review (The Era of Mathematics: An Independent Review of Knowledge Exchange in the 
Mathematical Sciences, 2018) recommended that “all mathematics students should acquire a 
working knowledge of at least one programming language.” In response to this, when the Institute of 
Mathematics and its Applications issued a call for proposals for its Higher Education Teaching and 
Learning Series workshops in 2019 this included a suggested theme “Developing undergraduate 
programming and coding skills in the mathematical sciences”. Matt Jones (Middlesex University) and 
Peter Rowlett (Sheffield Hallam University) submitted a proposal on this theme, which was funded 
by the IMA and Middlesex University and resulted in the workshop. We therefore gratefully 
acknowledge the role of the Bond Review and the Institute of Mathematics and its Applications in 
the origins of this special issue.  
 
The first three papers report talks presented at the workshop; the remaining papers were received 
following an open call for submissions on the theme.  
 
The issue opens with an article from Lynch detailing the change in the landscape of mathematics 
degrees and the impact of that on curriculum design around programming.  
 
Rowlett’s article follows with a discussion of the art of programming as it relates to mathematical 
thinking and, in particular, the difference between coding and programming in the context of a 
second-year module. Next, Jones and Megeney continue the theme of developing higher 
programming skills with a case study detailing a group assessment on a second-year module where 
students are introduced to design patterns and version control allowing for a more significant piece 
of software.  
 
Gwynllyw, Henderson, Van lent, and Guillot follow, presenting a case study also detailing how 
assessment can be designed to enable students to produce a more significant piece of software, 
this time in a third-year numerical analysis module. 
 
Lee and Button follow with an update on the changes to the Further Mathematics A-level curriculum, 
in particular the Further Pure with Technology unit that introduces programming. 
 
Three papers complete the issue presenting various automated assessment methods. Both 
Bostelmann and Morley detail the use of unit testing to assess student work, one in Java and the 
other in Python. Graham presents an article on assessing programming using the Numbas system. 
 
Finally, to round off the issue, Elwes and Sturman present a set of barriers and how they were 
overcome in embedding computational mathematics in an undergraduate programme. 
 
We write this in the middle of the worldwide Covid-19 pandemic. Over the last few months thousands 
have contracted and died of this virus including members of our community. Entire countries have 
been placed under various degrees of lockdown. And, as governments slowly ease restrictions, we 
face an uncertain future both in terms of our collective physical and mental health, and in terms of 
the economic impact.  
 

mailto:p.rowlett@shu.ac.uk
mailto:m.m.jones@mdx.ac.uk
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In this context, we are especially grateful to the authors and anonymous reviewers of articles for this 
issue, who have worked in a relatively timely manner despite global circumstances.  
 
We are grateful, too, for the work of Tony Mann and Alun Owen on editing this issue, particularly 
around the careful handling of articles from Rowlett and Jones and Megeney.  
 
During the pandemic lockdown, there have been a number of online events related to university 
mathematics teaching, learning, assessment and support. We would like to draw your attention to 
session recordings and resources from:  

• Teaching And Learning Mathematics Online (TALMO) [IMA, LMS and RSS] http://talmo.uk/  

• sigma Online Support Workshop [sigma Network] http://www.sigma-network.ac.uk/sigma-
online-support-workshop-29th-may-2020/ 

• E-Assessment in Mathematical Sciences (EAMS) [Newcastle University] 
https://eams.ncl.ac.uk/  

 
Over the course of 2019, the editors and editorial board of MSOR Connections have completed a 
piece of work looking at the membership and makeup of the editorial board. This is the first issue 
published since the announcement of the enlarged and much more international editorial board, so 
we would take this opportunity to welcome Shazia Ahmed, Noel-Ann Bradshaw, Cosette Crisan, 
Anthony Cronin, Francis Duah, Jonathan Gillard, Michael Liebendörfer, Birgit Loch, Ciarán Mac an 
Bhaird, Eabhnat Ni Fhloinn, Josef Rebenda and Frode Rønning to the editorial board. 
 
You can contribute to the work of MSOR Connections in providing a forum for sharing and discussion 
of ideas around teaching, learning, assessment and support by writing case studies about your 
practice, accounts of your research and discussing your opinions, and by acting as a peer reviewer 
for articles.  
 
To submit an article or register as a reviewer, just go to https://journals.gre.ac.uk/index.php/msor. 
When you register as a reviewer, it is very helpful if you write something in the ‘reviewing interests’ 
box, so that when we are selecting reviewers for a paper we can know what sorts of articles you feel 
comfortable reviewing.  
 
We hope you enjoy reading this issue.  
 
 

 

 

 

  

http://talmo.uk/
http://www.sigma-network.ac.uk/sigma-online-support-workshop-29th-may-2020/
http://www.sigma-network.ac.uk/sigma-online-support-workshop-29th-may-2020/
https://eams.ncl.ac.uk/
https://journals.gre.ac.uk/index.php/msor
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CASE STUDY 

Programming in the Mathematics Curriculum at Manchester 

Metropolitan University  

Stephen Lynch, Department of Computing and Mathematics, Manchester Metropolitan University, 
Manchester, UK. Email: s.lynch@mmu.ac.uk. https://orcid.org/0000-0002-4183-5122.   

Abstract  

An increasing number of schools are teaching programming to their pupils and there is also an 

increase in programming in Higher Education with recent reports recommending this approach. At 

Manchester Metropolitan University (MMU) we wanted to attract and retain mathematics students 

and prepare them for careers upon graduation. By integrating Mathematics/Statistics/Operational 

Research packages across the curriculum and by solving real world problems we have managed to 

make the course highly desirable and loved by our students. In this case study, we show how it is 

possible to integrate programming and mathematical/computational modelling across the curriculum. 

Keywords: Coding, computational modelling, real-world problems. 

1. Introduction 

In the 1990s, the mathematics degrees at MMU were technology based due to its historical 

polytechnic status. As technology became more and more advanced the staff found that they needed 

this technology to solve real-world problems. At that time, staff were using Maple, MATLAB and 

Mathematica for mathematics, Minitab for statistics and, for operational research, staff had 

developed their own software. There was not much programming involved in the course and students 

were being shown how technology could help solve problems in isolated pockets of the curriculum. 

After Curriculum 2000 was introduced into the UK, numbers on mathematics degrees across the 

country, including at MMU, dipped alarmingly and that is when we at MMU decided that a radical 

new approach was needed to draw students onto our mathematics degrees. It was also at this time 

that MMU decided to save money and pay for only one software licence for the faculty. Engineering 

has always been a much larger department than mathematics at MMU, and so it was decided that 

the university would adopt MATLAB as its sole programming language for all departments in the 

Faculty of Science and Engineering. In our new curriculum in 2000, we adopted MATLAB in 

mathematics and established a new first year unit entitled “Linear Algebra and Programming Skills.” 

The other mathematics units were also adapted to incorporate MATLAB, the statistics units 

continued with Minitab, and as operational research staff retired, some MATLAB and open-source 

software was adopted. As the curriculum continues to develop, we have found that programming is 

playing an increasingly important role within our courses.  

Initially, there was some resistance from some of the students with regards to programming and the 

majority of students chose units without much coding, however, as staff became more experienced 

at teaching programming, there was a slow migration over to those units and now programming is 

popular on the mathematics degrees. We were delighted to read the government reports published 

in 2018 which vindicated our approach to teaching.  

In February 2018, the Government Office for Science and the Council for Science Technology 

published the Blackett Review (Peplow, 2018), a report highlighting the importance of simulation 

utilizing computational and mathematical modelling of complex systems in both the public and private 

sectors. A few months later, in April 2018, an independent review of knowledge exchange in the 

mailto:s.lynch@mmu.ac.uk
https://orcid.org/0000-0002-4183-5122
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mathematical sciences was published entitled “The Era of Mathematics - Review Findings on 

Knowledge Exchange in the Mathematical Sciences” (Bond, 2018). Amongst the findings and 

recommendations of the Bond review was the recommendation that – “All mathematics students 

should acquire a working knowledge of at least one programming language.” Both of these reports 

highlight the importance of computational modelling and programming in the modern world. With 

mathematics packages such as Maple, MATLAB, Mathematica and Python; statistics packages such 

as Minitab, R, SAS, SPSS; and operational research packages such as CPLEX, FICO Xpress and 

Gurobi, mathematicians have the tools necessary to respond to these needs. With regards to 

computational modelling, the reader may be interested in the following simulation packages 

MapleSimTM, Simulink and Wolfram SystemModeler developed by MaplesoftTM, MathWorks and 

Wolfram, respectively. Python does have a framework for modelling and simulating dynamical 

systems called SimuPy, but this has only recently been developed. For big data, machine learning 

and deep learning, the reader is directed to PyTorch and TensorFlow, and finally, for operational 

research simulation, Simul8 currently appears to be the most popular tool.  

At Visit Days and Open Days at MMU we are finding an increasing number of students have 

experience at programming. Scratch is used in many primary and secondary schools around the UK. 

As of October 2019, the community statistics on the Scratch web pages show over 45,000,000 

projects shared with more than 47,000,000 users registered (Scratch MIT, 2019). The Raspberry Pi 

is used in many secondary schools around the UK. It promotes both Python and Scratch as the main 

programming languages and there is also support for other languages. The official magazine for the 

Raspberry Pi is the MagPi magazine and there are regular Raspberry Jam events held in the UK 

and across the world. Amongst the many projects available to school children are: Replace your 

desktop PC with a Raspberry Pi; Print with Your Raspberry Pi; Set Up a Retro Gaming Machine; 

Build a Minecraft Game Server; Control a Robot; Broadcast a Pirate FM Radio Station; Build a 

Raspberry Pi Web Server and Learn How to Code. See (Balon, 2019) for more examples of the 

Raspberry Pi in education. 

Programming in mathematics in Higher Education is becoming increasingly important in this 

technological age. In 2017, Sangwin and O’Toole (2017) conducted an online survey, with significant 

follow up correspondence, to establish the number of mathematics courses within the UK which 

incorporate programming on their degree program. The survey was completed by 63% of those 

institutons which offer a BSc (Hons) Mathematics degree. It was found that 78% of respondents 

included programming in a compulsory module and 11% did not teach programming at all. There 

are some universities in the USA which integrate programming into the undergraduate mathematics 

courses, see for example, (Buteau et al., 2015), (Cline et al., 2019) and (Jones et al., 2019). 

2. Curriculum Design 

At MMU, we have incorporated programming and computational modelling into the curriculum for 

more than twenty years. Figure 2 shows a typical four-year MMU MMath options map for the 

curriculum. The boxes coloured blue are heavily mathematics package-based, and packages such 

as Maple, Mathematica, MATLAB and Python would all serve equally well. The boxes coloured green 

are statistics based and boxes coloured yellow are operational research based. Suitable packages 

are again indicated in the legends in the top right-hand corner of Figure 1.  
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Figure 1. A typical curriculum map for Mathematics modules at MMU indicating that 

programming and computational modelling underpin the whole curriculum. Each 

module (block) is worth 30 credits. The emphasis is on programming for Mathematics 

and not programming for Computer Science. 

The key unit in the curriculum map in Figure 1 is the Linear Algebra and Programming unit in Year 

1. The students are first shown how to use MATLAB/Python as a graphing calculator and in every 

Linear Algebra class, MATLAB/Python functions are used to solve simple problems and plot figures. 

Within a few weeks, students are introduced to three programming constructs: (i) defining functions; 

(ii) for and while loops; and (iii) if, then, elif, else statements. The students are assessed using two 

in-class tests and one summer examination. One of the in-class tests set in a laboratory is based on 

simple programming ensuring that the students understand the three basic programming constructs 

(i) – (iii) above. Towards the end of the unit, programming is used in Linear Algebra to demonstrate 

linear transformations, in particular, rotation and translation of objects in two-dimensional space. 

This provides a precursor to the Year 2 unit entitled Computer Graphics – and students are given an 

insight into what is studied there. MATLAB/Python is also used as a graphing calculator in the other 

Year 1 units where specialist software in statistics and operational research is also introduced for 

computational modelling. 

In Year 2, MATLAB/Python is used in all six units at various levels and the students are shown how 

programming and computational modelling can be used throughout the mathematics curriculum. 

It is in Years 3 and 4 that the students start to see the real benefits of programming and 

computational modelling. The units Computational Methods of ODEs, Dynamical Systems and 

Chaos, Numerical Methods for PDEs and Digital Communications and Sound Processing are heavily 

MATLAB/Python-based. The coursework for these Year 3 units require some extensive 
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programming and interpretation of solutions to real-world problems and the examinations take place 

in a computer laboratory with access to MATLAB/Python. Statistics and operational research 

packages are used for computational modelling in the units Financial Mathematics and Time Series, 

Applied Regression and Multivariate Statistics and Advanced Operational Research but there is far 

less programming in these units. This allows students a route through the curriculum if they are 

averse to programming. There is an extensive list of mathematics projects offered in Year 3 – some 

are heavily programming/computational modelling based whilst others avoid programming and 

modelling all together. In Year 4, the units Advanced ODEs and Dynamical Systems, Computational 

Modelling of Fluid Flow and the MMath project are all heavily programming/computational modelling 

based and the students are expected to reproduce results from recently published journal papers. In 

the first two units, the examinations again take place in a computer laboratory. In the next section, 

we will show exemplars of coursework and examination questions used at MMU. 

3. Learning and Teaching and Assessment 

A typical 30 credit unit will consist of one/two hours of lectures followed by two/one hours in a 

computer laboratory. Lectures can have between 30-120 students present and the computer 

laboratories have a typical capacity for 30 students - this means that some laboratory sessions have 

to be repeated. Staff have found that teaching in a computer laboratory is the best medium to get to 

know the students more intimately – better even than one-to-one tutorials. The students happily talk 

and help one another and there is generally a very relaxed atmosphere enabling closer interactions. 

Students seem very happy with this method of teaching, since the inception of the Student Union 

Teaching Awards in 2011, mathematics has been shortlisted on six separate occasions winning the 

award in 2012 and 2018. In 2015, Mathematics at MMU was visited by a Teaching Fellow form 

University College London (UCL) and an IEEE conference paper was published in 2016 comparing 

the incorporation of programming into curricula at both MMU and UCL (Nyamapfene, 2016). Some 

exemplars of examination and coursework questions involving programming and computational 

modelling will now be listed for illustration. 

As Linear Algebra and Programming Skills are so vital to the curriculum, we start with an examination 

question from that Year-1 unit. 

Examination Question 1: 

(a) A geometric progression has first term a and common ratio 𝑟 < 1, and the sum of the first n terms 

is given by the expression: 

𝑆𝑛 =
𝑎(1−𝑟𝑛)

1−𝑟
 . 

Write a MATLAB/Python program which can input the first term, 𝑎, and compute and output the sum 

of the values of 𝑟 between 𝑟 = 0.1 and 𝑟 = 0.7 in steps of 0.2, and values of 𝑛 between 𝑛 = 5 and 

𝑛 = 20, in steps of 5. The results should appear in three columns for 𝑟, 𝑛 and 𝑆𝑛, with suitable column 

headings. The value of 𝑟 should be printed to one decimal place and the sum, 𝑆𝑛, to five decimal 

places. The program should use two nested for loops. Save the file as exam1a.m or exam1a.py, 

and run the program with 𝑎 = 4, and output the results to the file exam1a.txt.    

             [Program 8 marks, Result 2 marks] 

(b) Modify your part (a) program such that values of 𝑎 and 𝑟 are inputted from the keyboard and use 

a while loop to compute the sum, 𝑆𝑛, for a range on 𝑛 values, starting at 𝑛 = 3, and increasing in 

steps of 3. The loop should continue while the absolute difference between the part (a) sum and the 
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sum to infinity, 𝑆∞ =
𝑎

1−𝑟
, is greater than 0.5 × 10−6. The table now only needs to show the values of 

𝑛 and 𝑆𝑛, again shown to five decimal places. Save the program as exam1b.m or exam1b.py, and 

run the program with 𝑎 = 10 and 𝑟 = 0.5, and output the results to the file exam1b.txt.  

        [Program 8 marks, Result 2 marks] 

The next question is taken from a Year-2 examination for Operational Research and Financial 

Mathematics. 

Examination Question 2: 

The local government operational research team are developing a Markov Chain model to describe 

the way that the city residential population is changing. It is predicted that on average 5% of 

suburbanites will want to move into the centre each year and 3% of centre dwellers will want to move 

to the suburbs. Currently, 30% of the population live in the centre and 70% live in the suburbs.  

(a) (i) Draw a Markov Chain model for the problem and write down the single stage transition matrix 

for it. (ii) Write a MATLAB/Python program that determines the number of years required for the 

proportions of centre dwellers and suburbanites to become stable and state the stable proportions. 

Work to four decimal places and save your file as exam2a.m or exam2a.py. 

[10]  

(b) A flat screen TV manufacturer offers a complete replacement warranty if a TV fails within 2 years. 

Based on compiled data the company has noted that 4% of the TVs fail during the first year. 

Whereas, 1% of TVs that survive the first year will fail during the second year. The warranty does 

not cover replacement TVs. (i)  Draw a network representation of the problem. Hint you should have 

four states. (ii)  Derive the fundamental matrix N and matrix B. (iii) From the matrix B, give an 

estimate of the number of TVs that will require replacing.  

[10]  

The next question is a coursework question from the Year-3 unit Applied Regression and Multivariate 

Analysis. 

Coursework Question 1: 

Suppose that a random variable Y satisfies 𝑌~𝐵𝑖𝑛(3, 𝑝). In this case,  

𝐸[𝑌] = 3𝑝, 𝑉𝑎𝑟[𝑌] = 3𝑝(1 − 𝑝). 

In contrast to the above, a quasibinomial model can be constructed that satisfies 

𝐸[𝑌] = 3𝑝, 𝑉𝑎𝑟[𝑌] = 3𝑝(1 − 𝑝)𝜙. 

(a) For what values of 𝜙 is this distribution: (i) Over-dispersed? (ii) Under-dispersed? 

(b) Show that 𝑅 = 1 + 𝑌, satisfies  

𝐸[𝑅] = 1 + 3𝑝, 𝑉𝑎𝑟[𝑌] = 3𝑝(1 − 𝑝)𝜙, 
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where the mean and variance of Y can be derived from part (a). Table 1 relates the Research 

Excellence Framework ratings of submitted journal papers against the journal ranking using the 

Association of Business Schools journal list.  

(c) Enter this data into R using the labels ABS and REF, and include a screenshot of your R 

workspace once you have done this.  

Table 1: Research Excellence Framework Data 

REF Rating ABS 4* ABS 3* ABS 2* ABS 1* Unrated 

4* 94 80 4 2 3 

3* 95 296 29 1 6 

2* 47 150 54 9 37 

1* 3 28 10 6 21 

(d) Using the command sample(1:975, 1), delete one of the datapoints at random from each of the 

series ABS and REF. Include the details in your coursework submission. 

(e) Using a logistic quasibinomial model test for a relationship between y and the ABS journal rating, 

determine the effect of including a “−1”-term in the formula for the explanatory variables on the right-

hand side of the equation. 

(f) Using the model output in part (e), copy and complete the following table: 

ABS Rating E[R] Var[R] 

4*   

3*   

2*   

1*   

Unrated   

        [TOTAL=25 Marks] 
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The final examplar in this section presents a coursework question for the Year-4 unit, Advanced 

Ordinary Differential Equations and Dynamical Systems. 

Coursework Question 2: 

Consider the following nonlinear Leslie population model, where the decay rates decay exponentially 

with population size and the population is observed once per year: 

𝑋(𝑘+1) = (
𝑏1𝑒−𝑟𝑁 𝑏2𝑒−𝑟𝑁 𝑏3𝑒−𝑟𝑁

𝑐1 0 0
0 𝑐2 0

) 𝑋(𝑘), 

where 𝑋 = (𝑥, 𝑦, 𝑧)𝑇 ∈ 𝑅3, is a vector of the 𝑘′th age class populations. 

(a) Given that 𝑏1 = 5, 𝑏2 = 50, 𝑐1 = 0.8, 𝑐2 = 0.6, 𝑟 = 0.1, 𝑁 = 𝑥 + 𝑦 + 𝑧, determine the fixed points of 

period one and their stability. 

(b) Using the same parameters as in (a), given that, for the scaled population 𝑥(0) = 5, 𝑦(0) = 15, and 

𝑧(0) = 5: (i) compute the number of females in each age class after 100 years; (ii) plot a graph 

showing how the populations evolve and give a physical interpretation. 

(c) Given that 𝑏1 = 50, 𝑏2 = 50, 𝑐1 = 0.8, 𝑐2 = 0.6, 𝑟 = 0.1, 𝑁 = 𝑥 + 𝑦 + 𝑧, (i) use MATLAB/Python to 

produce an animation in 3-dimensional space which shows how the phase portrait changes as the 

parameter 𝑏2increases from 𝑏2 = 50 to 𝑏2 = 80. Initially take, 𝑥(0) = 5, 𝑦(0) = 15,  and 𝑧(0) = 5; (ii) 

take still shots of the animation to submit your coursework and describe what happens to the age 

class populations physically. 

        [TOTAL=25 Marks] 

 

On reflection, teaching in lectures, tutorials and computer laboratories provides a great deal of variety 

for both our students and staff and we believe that this variety is a major factor in what makes the 

mathematics degree loved by our students. The assessments can be made more challenging and 

can be applied to real-world problems, which the students appreciate. Finally, the students and 

parents who come to us for Open Days and Visit Days tell us that the highlight of the day is the 

interactive Python sessions in our laboratories. 

4. Conclusion and Future Enterprises  

The course philosophy for mathematics at MMU is to provide an applications-based approach using 

computational modelling and programming to solve real-world problems. The curriculum map 

displayed in Figure 1 and discussed in Section 2 demonstrates how this is possible. Section 3 

presents exemplars of coursework and examination questions for a number of units from Years 1 to 

4. Interested readers will find my Python book (Lynch, 2018) useful for material for Dynamical 

Systems units in Years 3 and 4. The book also includes a chapter listing 20 coursework exemplars 

as well as three example examination papers. From 2020, we will be offering an annual summer 

term workshop on Python programming for other departments in the Faculty of Science and 

Engineering at MMU. Working with Professor Louise Walker at the University of Manchester, we will 

also be offering annual summer workshops on “Python for A-Level Mathematics and Beyond,” 

suitable for both teachers and sixth form students. The goal is to get more students to choose 

mathematics at degree level. 



 

12 MSOR Connections 18(2) – journals.gre.ac.uk 

5. Acknowledgements 

This paper is based on a talk given at the ‘Programming in the Undergraduate Mathematics 

Curriculum’ workshop, Middlesex University, 27th June 2019. 

6. References  

Balon, B. and Simic, M., 2019. Using Raspberry Pi computers in education. 42nd International 

Convention on Information and Communication Technology, Electronics and Microelectronics, 

pp.671-676. https://doi.org/10.23919/MIPRO.2019.8756967. 

Bond, P. ed., 2018. The Era of Mathematics – Review Findings on Knowledge Exchange in the 

Mathematical Sciences. Engineering and Physical Sciences Research Council and the Knowledge 

Transfer Network. Available at: https://admin.ktn-uk.co.uk/app/uploads/2018/04/KE-booklet-for-

web.pdf [Accessed 25 March 2020]. 

Buteau, C., Muller, E. and Ralph, B., 2015. Integration of programming in the undergraduate 

Mathematics program at Brock University. Online Proceedings of the Maths + Coding Symposium. 

London (Canada). Available at:  http://researchideas.ca/coding/docs/ButeauMullerRalph-

Coding+MathProceedings-FINAL.pdf [Accessed 25 March 2020]. 

Cline, K., Fasteen, J., Francis, A., Sullivan, E. and Wendt, T., 2019. Integrating programming 

across the undergraduate mathematics curriculum. PRIMUS: Problems, Resources, and Issues in 

Mathematics Undergraduate Studies, 30(7), pp.735-749.  

https://doi.org/10.1080/10511970.2019.1616637. 

Jones, L.B. and Hopkins, B.J., 2019. Teaching a course in mathematical programming. PRIMUS: 

Problems, Resources, and Issues in Mathematics Undergraduate Studies. Available at 

https://doi.org/10.1080/10511970.2019.1619207. 

Lynch, S., 2018. Dynamical Systems with Applications using Python. New York: Springer 

International Publishing. 

Nyamapfene, A. and Lynch, S., 2016. Systematic integration of MATLAB into undergraduate 

mathematics teaching: Preliminary lessons from two UK institutions. IEEE Educon 2016, pp.1145-

1148. https://doi.org/10.1109/EDUCON.2016.7474699.  

Peplow, M. ed., 2018. Computational Modelling: Technological Futures. Government Office for 

Science and Council for Science and Technology. Available at 

https://www.gov.uk/government/publications/computational-modelling-blackett-review  [Accessed 

25 March 2020].  

Sangwin, C.J. and O’Toole, C., 2017. Computer programming in the UK mathematics curriculum. 

International Journal of Mathematical Education in Science and Technology, 48(8), pp.1133-1152. 

https://doi.org/10.1080/0020739X.2017.1315186. 

Scratch.mit.edu, 2019. Community statistics at a glance. Available at: 

https://scratch.mit.edu/statistics/ [Accessed 25 March 2020]. 

https://doi.org/10.23919/MIPRO.2019.8756967
https://admin.ktn-uk.co.uk/app/uploads/2018/04/KE-booklet-for-web.pdf
https://admin.ktn-uk.co.uk/app/uploads/2018/04/KE-booklet-for-web.pdf
http://researchideas.ca/coding/docs/ButeauMullerRalph-Coding+MathProceedings-FINAL.pdf
http://researchideas.ca/coding/docs/ButeauMullerRalph-Coding+MathProceedings-FINAL.pdf
https://doi.org/10.1080/10511970.2019.1616637
https://doi.org/10.1080/10511970.2019.1619207
https://doi.org/10.1109/EDUCON.2016.7474699
https://www.gov.uk/government/publications/computational-modelling-blackett-review
https://doi.org/10.1080/0020739X.2017.1315186
https://scratch.mit.edu/statistics/


 

MSOR Connections 18(2) – journals.gre.ac.uk  13 

CASE STUDY 

Programming as a mathematical activity 

Peter Rowlett, Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, 
UK. Email: p.rowlett@shu.ac.uk. https://orcid.org/0000-0003-1917-7458.  

Abstract  

Programming in undergraduate mathematics is an opportunity to develop various mathematical 

skills. This paper outlines some topics covered in a second year, optional module ‘Programming with 

Mathematical Applications’ that develop mathematical thinking and involve mathematical activities, 

showing that practical programming can be taught to mathematicians as a mathematical skill.  

Keywords: programming, mathematical thinking, applications. 

1. Introduction 

In a mathematics degree, choice of taught content should support the development of the skills 

needed by graduate mathematicians. Programming can play a considerable role here: directly, by 

involving mathematical computation and being related to many graduate jobs including in areas such 

as data science; and indirectly, being closely related to mathematical skills such as clear thinking, 

problem-solving and precise communication. This article discusses ways in which a module on 

programming has been used to develop mathematical skills. First, a description is given of the 

teaching context. Following this, mathematical teaching and assessment activities are discussed as 

involving mathematical thinking and mathematical applications.  

2. A module ‘Programming with Mathematical Applications’ 

Programming is taught to undergraduate mathematics students via an optional second-year, 20-

credit module, ‘Programming with Mathematical Applications’. This follows on from a little 

programming experience as part of a core first-year module, plus considerable variety of formal and 

informal prior knowledge. In two years of operation, the module has attracted between 20-30 

students, who work on laptops around tables in an informal classroom environment. Teaching is 

mostly via written notes with code examples, motivated by diverse prior knowledge and the fact that 

students will learn a lot more from running their own code than watching me do so. The self-paced 

nature is commented on by students as a positive. For students already familiar with the content, a 

series of challenge problems are offered, as well as the freedom to explore programming interests 

beyond the taught curriculum.  

The module comprises taught content on programming fundamentals and mathematical 

functionality, graphics, GUIs and data manipulation, presentation of mathematical information on the 

web, and database queries. The choice of topics is based somewhat around their popularity 

observed through roles taken by our graduates. Following the directly taught content, students take 

the lead via individual projects completed partly in class time with staff support via in-class discussion 

and two scheduled progress meetings.  

Assessment is via staged independence. A first piece of coursework asks students to write a series 

of functions to perform specific tasks, for example “Write a function that takes as its input a number 

𝑥 and returns the value of 
2𝑥

𝑥−1
”. A second coursework gives a detailed program specification and 

asks students to write a program to meet this functionality. The task is specified at a higher level 

than the first coursework, for example “Generate 10 HTML files containing certain pseudo-

mailto:p.rowlett@shu.ac.uk
https://orcid.org/0000-0003-1917-7458
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randomised mathematical information”. Finally, an individual project assignment gives a flexible brief 

or area of interest and allows the student greater freedom in demonstrating their programming 

abilities. Students were asked to submit a program (language not specified) along with a HTML page 

which contained: an explanation of the mathematical statistical or technical content; a description of 

how the program works; and, a critical review of the work.  

3. Programming as mathematical thinking 

3.1. Programming vs. coding 

There are lots of program constructs that are common to many programming languages, such as if 

statements, loops and functions. I define programming as the process of using program constructs 

to express an algorithm in a way that a computer can interpret and act on. Coding, by contrast, is 

the business of writing a program in the syntax of a particular language.  

Programming, requiring clear, systematic thinking and unambiguous communication, is a skill closely 

linked to mathematics and the practice of the professional mathematician. In teaching mathematics 

students, it seems appropriate to focus principally on programming. In order to do so, though, it is 

necessary to write code in a particular language. I tell students that the fact we are coding in a 

particular language is secondary; the important thing is that they are learning how to program. This 

also has the advantage that learning to understand program constructs and the process of combining 

these to implement an algorithm is a skill that can be readily transferred to other programming 

languages.  

I tell my students syntax errors are essentially inconsequential, in order to emphasise programming 

skills over coding. Rote learning of specific syntax is not a worthwhile goal of programming teaching. 

People who know several languages might sometimes use the syntax from one in another, 

particularly if they are using a language they haven’t used for a while. This is a minor issue, easily 

overcome. I tell students they should not feel they are failing as programmers if they have to search 

for help with syntax. I say that learning how a for loop works and what it can be used for is important, 

but remembering the precise syntax to make one happen in a particular language is secondary. I 

also say that if they are regularly working in a particular language, they will find they start to memorise 

syntax for that language much more easily. If they stop using a language for a while, they will become 

rusty on syntax, but the idea is that their understanding of the programming fundamentals will persist.  

3.2. Teaching directed to programming that isn’t coding 

I deliberately open the first class in my programming module with a piece of teaching that does not 

use computers. We are in a standard teaching room with laptops available at discretion of the 

lecturer, so telling students they are not getting laptops out is a stunt, designed to focus attention on 

programming skills beyond writing code. (You might feel it is similarly a stunt to have the single 

reference in an article about programming be from 1896, or indeed to wait until two thirds of the way 

through the article before naming the language in which students are coding.) 

I give students a paper worksheet on propositional logic that opens with this statement:  

Computers do what you tell them to do, not what you really meant them to do, so when 

programming it helps to think strictly logically. This worksheet is designed to refresh some 

relevant concepts and encourage you to think clearly and carefully.  

The worksheet covers propositions and predicates, NOT, AND, OR, XOR and truth tables, and 

contains some exercises designed to emphasise clear communication, examples of which are given 

below.  
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Students are asked to identify propositions – statements that have a truth value – such as “Two plus 

two equals four” and “The moon is made of green cheese”, from that list that includes statements 

that are not propositions, such as “Would you like a cup of tea?” 

Students are asked to think about the difference between OR and XOR (exclusive OR) in some 

natural language sentences, such as “Did you see Claire or Alex earlier?” and “Is the door open or 

closed?” An example exercise in thinking and communicating clearly is given in figure 1(a). In this, 

social convention dictates that the first ‘or’ is an XOR, while the second is an OR. There is room for 

interesting discussion here, because while the waiter may intend the first as an XOR, it isn’t strictly 

the case because if the customer answered “both” to the first question, they would presumably be 

served both (by the principle ‘the customer is always right’).  

Another truth table activity relates to implication. Say 𝑝 is “5 = 7” and 𝑞 is “you get a first class 

degree”. Students are asked to consider 𝑝 ⇒ 𝑞 using a truth table. Then they are asked to resolve 

some sorites by Lewis Carroll, which are a series of statements which can be linked to form a single 

chain of predicates. An example is given in figure 1(b) (taken from Carroll, 1896, p. 112). This is 

designed to support clear thinking and lead into the right kind of thinking for programming logic using 

if statements. 

(a) Consider the following conversation. 

WAITER: Would you like tea or coffee? 

CUSTOMER: Tea, please. 

WAITER: Would you like milk or sugar? 

CUSTOMER: Both, please. 

Which type of ‘or’, OR or XOR, is being used by the waiter in each of the two questions? 

(b) Write each of the following three statements as an implication.  

(i) All babies are illogical. 

(ii) Nobody is despised who can manage a crocodile. 

(iii) Illogical persons are despised. 

Arrange these implications into a chain so that you reach a consistent conclusion. 

Figure 1. Sample exercises targeted at precise communication and clear thinking. 

 

Later in the first class, after the students have spent some time getting Python up and running and 

writing a ‘Hello, World!’ program, another worksheet is based around algorithms. I tell students 

algorithms are a sequence of precise instructions. In an electives choice session, where students 

are presented with details about each optional module in order to choose which to study, I show a 

picture of some cakes and tell them these were produced by my son and me by following an 

algorithm. In class, I ask students to write algorithms for every day and mathematical activities, such 
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as “putting on a t-shirt”, “making a cup of tea” and “differentiating the product of two functions”. I then 

ask them to show their algorithm to someone else, with the instruction:  

When you are shown someone else’s, try to be as pedantic as possible and wilfully misinterpret 

the instructions. The point is to think about how to really tightly specify a sequence of actions.  

This is a fun activity, and a little silly. Some students are reluctant, but I believe benefit from being 

pushed to participate. A reluctant student might simply say “put your arms in the arm holes and your 

head through the head hole”. A response might be “but now the t-shirt is inside out or back-to-front!” 

A particularly witty student I observed answered this kind of loosely-specified algorithm with the 

question “isn’t it uncomfortable to be wearing a t-shirt that has a coat hanger inside?”  

4. Programming using mathematical applications 

As well as embedding precise and mathematical thinking in activities, there are plenty of 

opportunities to make use of mathematical applications in programming exercises.  

Some example mathematical activities used in examples and exercises while learning and practising 

basic programming: 

• calculating whether a given year is a leap year (if statements); 

• generating terms of the Fibonacci sequence (for loop); 

• prime factorisation (while loop); 

• computing factorials (recursion); 

• asking the user to input a number with some property (user input); 

• import data from a CSV file into a spreadsheet (file access); 

• generating charts from data using a GUI interface (graphics).  

Further mathematical and statistical functionality is included via Python modules, and programming 

skills can be practised while using these, for example: 

• math: mathematical functions, e.g. log, sin;  

• cmath: mathematical functions for complex numbers;  

• numpy: support for matrices and related mathematical functions;  

• scipy: scientific computing, e.g. ODE solvers, linear algebra, etc.;  

• matplotlib: 2D and 3D plotting; 

• pandas: data analysis tools; 

• sympy: symbolic computation. 

It is possible to include mathematical applications when testing programming skills in slightly more 

complicated tasks, for example: 

• simple operations: convert a complex number from Cartesian to polar coordinates.  

• statistical methods: hypothesis testing. 

• numerical methods: find the eigenvalues of a given matrix. 

• brute-force number theory: testing for certain properties of a number, e.g. whether it is 

abundant.  

• simulation: simulate flipping a coin 1000 times and report how many heads occurred and 

what was the longest chain of heads in a row.  
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Project-based learning, involving more in-depth, open-ended tasks, is an opportunity to include more 

advanced mathematical activities while assessing programming skills. Students are given a choice 

of programming language for this task. Most choose either Python or VBA, which are taught in the 

module, with a small number choosing alternative software such as Matlab. Some example project 

areas are given below. 

• Exploring computer functionality, e.g. investigation of how numbers are represented in 

computers and the resultant errors that occur; methods for generating pseudo-random 

numbers; manipulation and calculation of dates. 

• Numerical or computational methods, e.g. showcasing linear algebra or ODE solver methods, 

statistical methods or data analysis tools. 

• Simulation/modelling, e.g. cellular automata, scheduling a sports league or tournament; 

iterative prisoner’s dilemma; programming a simple combinatorial game. 

• Mathematical investigation, e.g. fractals; representations of 3D objects; machine learning, 

e.g. via artificial neural networks or generic algorithms. 

• Historical investigation, e.g. implementing Ada Lovelace’s program for computing Bernoulli 

numbers; investigating methods for approximating 𝜋.  

5. Discussion 

There are many opportunities not explored here. Partly, this is because our degree is in general quite 

computational. For example, students make use of Matlab in mathematical modelling modules and 

of statistical and data analysis software in statistics teaching. Even so, there is much opportunity to 

develop the skills of a graduate mathematician through programming, as I hope this article has 

conveyed.  
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Abstract 

Programming is increasingly becoming an expected graduate skill for mathematics students. We 

argue in this article that programming should be given the same priority as any other graduate skill. 

Given the practical and philosophical constraints placed on undergraduate mathematics curricula, 

however, we acknowledge the difficulty in introducing, in a meaningful way, many of the core ideas 

of programming. We therefore present a case study of a second year course on an undergraduate 

mathematics programme that introduces Object Oriented Programming and aspects of software 

design, as well as key practical skill such as version control. We will argue that group assessment 

in this context is a more natural setting for students to be working and reflects more closely the 

experience of programming in industry; furthermore, it serves as a convenient platform to introduce 

students to aspects of software design and practical programming considerations. We will present 

an example of the type of assessment that can be used and how Version Control Systems like Git 

can be used to give students a more realistic experience of programming with the advantage of 

allowing tutors and other group members to track student work.  

Keywords: Programming, Group assessment, Employability, Graduate Skills 

1. Programming as a Graduate Skill 

Historically, computing has been embraced by mathematicians as a tool for studying and solving 

problems in mathematics. The introduction of the NAG Libraries for FORTRAN in 1970 and TeX in 

1979 serve as very early examples of its contributions. In different ways both of these had a 

significant impact on mathematics. However, they also highlight a common attitude of 

mathematicians to programming. According to Sangwin and O’Toole (2017) programming, as 

currently taught in undergraduate mathematics curricula across UK HEIs, largely reflects this natural 

order, often being introduced and taught in mathematics courses as a tool for solving specific 

problems: numerical solutions to ODEs/PDEs, numerical analysis, mathematical and statistical 

modelling and many other areas. This is likely the reason why the authors’ findings suggest that 

languages such as MATLAB or R are amongst the more popular languages taught. The authors 

highlight a number of gaps, however, in the current offering by mathematics departments, not least 

the fact that programming paradigms such as Object Oriented Programming or Functional 

Programming may not be introduced to students in any meaningful way (p. 1145): 

It is therefore somewhat surprising that [programming paradigms] are not currently taught 

and since they are at best optional, the vast majority of undergraduate students will never 

encounter these programming paradigms as part of their undergraduate education. 
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In contrast the most popular languages for computing degrees (see Murphy et al., 2017) are Java, 

C (and its successors C++ and C#), and Python; R is not being taught at all and MATLAB is taught 

in fewer than 3% of computing courses. This difference is explained by the fact that computing 

degrees have a clearer career progression, however it is also likely due to the relationship many 

professional mathematicians have with programming: it is a tool for solving specific problems or 

simplifying calculations. This is corroborated in Murphy et al. (2017) where the authors asked 

respondents why they chose their particular language. The most prevalent response, independent 

of the language, was its relevance in industry. Since the second most popular career choice for 

mathematics graduates is IT, according to Prospects (2019), and programming is increasingly 

becoming an important skill, we argue that it should be considered a graduate skill and that as 

mathematicians we should be mindful of this in curriculum design, even to the point of taking the 

lead from computing degrees. However, we also appreciate that mathematics degrees are, of 

course, not computing degrees and there are a number of hurdles to introducing graduate skills in 

mathematics curricula. Indeed, as Waldock (2011, p. 5) says, 

There are significant barriers involved when seeking to modify Mathematics 

programmes to encourage the development of graduate skills. One is fundamentally 

philosophical, as some will wish to retain the pure, theoretical nature of their courses. 

Another is the practical difficulty of finding space for graduate skill development in a 

crowded curriculum.  

The view of students entering degree programmes in the UK has changed significantly in the last 20 

years. The days when a university degree was seen as the sole route to career success have gone. 

In the most recent Global Learner Survey (Pearson, 2019), only 17% of UK respondents agreed with 

the statement that a college degree is essential to achieving a successful and prosperous career. 

This demonstrates a significant shift from previous studies. For example, a YouGov poll in 2012 

found that 81% of respondents thought going to university was essential for them to pursue their 

career (Adediran, 2015). Additionally, in the Global Learner Survey, 66% of UK respondents believed 

a degree or certificate from a vocational college or trade school is more likely to result in a good job 

with career prospects than a university degree. 

These changes in student attitude come at a time when the STEM skills shortage is highly publicised 

and a source of concern. UK government policy has in the last 10-15 years attempted to close this 

gap, and the extent to which universities should be responsible for addressing the shortage has been 

controversial in areas such as mathematics. However, with the publication of the so-called Augur 

report in May 2019 (Department for Education, 2019), there is a clear move to a situation where 

degree value is measured by graduate prospects rather than on its own merit. As a result, it is likely 

that graduate skills will become ever more important and will need to be transparent in the curricula 

of mathematics degrees in the future.  

In this climate it is, therefore, becoming necessary for subjects like mathematics to reaffirm their 

position as career-facing subjects and, we would suggest, challenge the complacency that 

mathematics is, by some measure, top-of-the-pile in terms of its employability status. It is with this 

in mind that we have reconsidered how we teach programming on undergraduate mathematics 

degrees at Middlesex University, aiming to include specific, industry standard skills training that 

students can highlight to potential employers. And we have done this in a way that minimises the 

encroachment into the standard curriculum. 

2. Context 

The course we discuss in this case study is a second year undergraduate course on the BSc 

Mathematics programme. Students learn either R or Python in their first year and are introduced to 
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Java in their second-year. As is recommended in Sangwin and O’Toole (2017) this design means 

programming is taught throughout the first two years of the students’ degree rather than in isolated 

courses, and remains optional in their third year. The course in question is a skills-based course, 

Problem Solving Methods, that introduces students to a wide range of techniques in applied 

mathematics as well as techniques to develop mathematical problem solving skills in pure 

mathematics (see Jones and Megeney, 2018). Workshops are inquiry-led, sometimes employing the 

Moore method (see Parker, 2005), to encourage students to develop their problem-solving skills and 

confidence. The content of the module ranges from areas of applied mathematics including 

optimisation, mathematical modelling, numerical methods and analysis, to areas of pure 

mathematics including number theory and real analysis. Students work weekly on different problems, 

developing strategies to solve abstract and unfamiliar problems, building a set of robust, internalised 

tools for enquiry. Programming is used as one such tool for examining problems and conjecturing 

solutions, and students are encouraged to see it as one of many avenues of progress. The structure 

of the workshops is heavily influenced by Pólya (1957), although expanded to include, as tools for 

examining problems, the use of software or programming. Whereas when Pólya wrote his work on 

solving problems he wrote about examining examples to get a better understanding of a problem, 

we encourage students to do the same using computers. The use of programming thus becomes 

one of the many integral tools available to students to study problems.  

Students arrive in their second year with a good grounding in basic procedural programming and 

have developed some appreciation and experience of algorithm design. Introduction to a new 

language is therefore a matter of learning a new syntax (although further specific differences must 

also be mastered such as might be expected when learning a compiled, statically typed language). 

Although the course content is taught in an informal workshop setting, many of the initial 

programming laboratories are taught more traditionally. Topics are introduced by the tutor and 

students work in pairs using the driver/navigator model, as described in Hannay et al. (2009) and 

Brown and Wilson (2018). There is an emphasis on teaching students many of the formal concepts 

from computer science that are necessary to implement object oriented design principles. We do not 

aim to teach aspects of functional programming; although Java does incorporate this paradigm in 

some sense, the course team does not believe it is in the interest of the students to confuse object 

oriented programming and functional programming. The taxonomy outlined in Figure 1, influenced 

by Selby (2015) and our own experience, is used as reference; it models the cognitive journey and, 

especially, our aspirations for where they will reach. The Aesthetics alluded to in the figure are not 

taught explicitly – instead students see aspects of them in the problems they solve and the 

assessment. The assessment of the course consists of individual coursework and group coursework; 

it is the latter that we wish to discuss here. 

Students become accustomed to working in teams and presenting their work in class. This helps 

alleviate some of the issues common in group work as discussed, for example, in MacBean et al. 

(2004). 

3. Structure of the group assessment 

The philosophy of object-oriented programming lends itself naturally to group work, 

compartmentalisation of code allows group members to work independently of one another whilst 

still being part of a team. Indeed, aspects of high-level design such as design patterns, abstraction 

and inheritance are given a heightened importance – students must design the structure of the 

programme before they start coding in order to maintain compatibility.  
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Figure 1: Programming taxonomy 

 

In software design, design patterns are pre-packaged solutions to common problems, a classic 

reference to these is the so-called Gang-of-Four (Gamma et al., 1995). In our opinion one of the 

most accessible design pattern for teaching is the Factory Design pattern (and, to a lesser extent, 

the Abstract Factory Design). We focus on this in our design of suitable assessment since it serves 

as a useful platform to further enquiry into design patterns. However it should also be noted that this 

is only our personal preference and other design patterns might also lend themselves naturally to 

group work.  

The coding for the group assessment must be of the following form: 

1. Decomposable into smaller problems 

2. Each smaller problem should be solvable independently of the others 

3. There should be an interface that ensures compatibility of code 

4. The solution should lend itself to the Factory Design pattern (Figure 2). 

Groups are arranged with a lead who will be responsible for the interface and acts as a client for the 

software – i.e. queries, runs and presents output. Other members of the group are responsible for 

solving the smaller parts of the problem. 

As an example we might have groups write software that solves numerically an ordinary differential 

equations. Groups would normally be expected to use different numerical techniques such as Huen’s 

method, or various other levels of precision of Runge-Kutta to find solutions. Individual group 

members can then take responsibility for each of the techniques used and the lead takes 

responsibility for the overall design.  
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Figure 2: UML diagram for the factory design pattern 

 

The advantage of structuring assessment in this form is that, with appropriate feedback, students 

will naturally discover that something approximating a factory design pattern must be used. Tutors 

then introduce students to Design Patterns or at least the Factory Design Pattern. Note at this stage 

students will have already encountered many design patterns in the course of their learning of object 

oriented programming, although may not have recognised them as such. For example the Iterator 

Design is built in to Java, and students will have seen the Adapter pattern when implementing data 

structures. 

An important aspect of designing assessment that is decomposable like this is that students need to 

address the issue of version control – how does one know one is working on the current version of 

the code, or how does one avoid clashing with other work done. Version Control Systems are 

numerous, but the most common is Git. The university uses a local Git repository provided by GitLab. 

We do not advise students to use their own GitHub accounts to complete group assessment since 

elsewhere we promote GitHub as a convenient place for students to document a portfolio of work, 

so only final versions of software are made available on GitHub. Students are trained in the use of 

Git to maintain software, and the log from individual Git forks are used to ensure comparability of 

work effort in the final submission, thereby mitigating against the problem of ‘coasting’. 

4. Reflection and Concluding Remarks 

Our approach to group assessment in programming discussed in this article is still in its initial stages 

with only two cohorts having been assessed this way. In a future article we expect to be able to 

evaluate the effectiveness using longitudinal data. However we are not yet at this stage.  

Initially our main concern was that mathematics students would not feel comfortable learning 

technology like Git, especially those that were not aiming to go on to careers in software 

development. However, we have found that students have reacted positively to the opportunity of 

learning it. The following student’s response summarises views on the usage of Git: 

Being introduced to Git within the [undergraduate] degree is also helpful as the student can set 

up their own GitHub profile, load up their coursework and use this as a portfolio which is amazing 

for employability. 

In our experience students look favourably on opportunities to develop outward-facing exhibits of 

their work for employers and so even those not thinking of careers at this point see the advantage 

of using a tool like this. 
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We were also concerned that students would not be able to make the link between the structure of 

the assessment and the factory design pattern at all. Instead, in all cases, groups naturally designed 

their code with some of the notions of these patterns embedded. This helped improve confidence in 

their coding significantly and when, during formative feedback sessions, students were introduced 

to the formal factory design pattern it was evident that they made a significant connection to what 

can be an abstract idea. In some cases students went on to research more about design patterns 

and algorithm design. 

Group work can be fraught with problems such as coasting, and a perceived increase in plagiarism. 

Indeed, there is growing scepticism amongst undergraduate students that it is worth the effort. 

Whereas plagiarism can be mitigated to some extent by assessment design, the coasting effect is 

certainly still an issue for some students using the approach described in this article. We prefer a 

proactive approach to dealing with these problems, intervening when needed. Communicating the 

use of Git to measure mutual effort has been useful, but we have not yet taken the approach of 

weighting group members’ marks based on this. Given the approach described in this article is still 

evolving, we may well need to take a more authoritarian approach to this if necessary in the future. 

In conclusion, considered as a pilot, our approach to introducing more advanced programming 

techniques in a group setting has been successful. In our experience students are well-suited to 

independently discover practical aspects of programming. It should be noted however that we have 

not yet encountered a situation where students have not independently discovered the ideas we 

have intended them to, and this will need to be considered in future.  
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Abstract  

In this Case Study we describe the rationale, methodology and results of teaching Python as part of 

a third year optional Numerical Analysis module taken by undergraduate BSc Mathematics students 

at the University of the West of England, Bristol. In particular we focus on how we have used 

programming mini-tasks to engage and prepare students for using Python to complete a more 

significant piece of coursework, taken later in the course. These mini-tasks are marked electronically 

using the Dewis e-assessment system which provides the students with immediate and tailored 

feedback on their Python code.  

Keywords: Python, programming, e-assessment, numerical analysis. 

1. Introduction 

In a recent report, Bond (2018) recommended that computer programming becomes a core part of 

mathematics degrees. For many years, students on the BSc Mathematics course at the University 

of the West of England (UWE), Bristol used the Maple (2019) computing environment as a 

combination of a computer algebra system and a programming language. In the first two years of 

the three year course, Maple was used primarily as a symbolic engine and for visualisation of 

solutions. A short course on computer programming was included in one of the first year modules 

but, for the students’ first two years of study, their use of Maple as a programming language was 

limited. However, in their third year, students taking the optional Numerical Analysis module were 

required to create and develop their own Maple programs. 

In 2018 it was decided to introduce Python into the BSc Mathematics course. There were a number 

of reasons that led us to this decision. Firstly, although Maple can be used as a programming 

environment/language, it was felt that this was not its primary function. As such, we were not 

exposing students to a typical programming environment. Secondly, outside of Mathematics higher 

education, Maple is not a widely known package and hence a student’s experience of Maple is not 

necessarily significant to potential employers. In addition, there is less information and support for 

Maple online (via GitHub for example, https://github.com/) than for other languages (RankRed, 

2019). In contrast, Python has become one of the most popular programming languages (The 

Economist, 2018) and as with Maple, Python has capability for symbolic mathematics using the 

SymPy package (Meurer et al., 2017).  

mailto:rhys.gwynllyw@uwe.ac.uk
mailto:karen.henderson@uwe.ac.uk
mailto:jan.vanlent@uwe.ac.uk
mailto:elsa.guillot@uwe.ac.uk
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Having made the decision to introduce Python into the BSc Mathematics curriculum, we identified a 

suitable pilot course to be the optional Level 6 Numerical Analysis module. The module’s design 

already accounted for some students’ lack of confidence in computer programming by allocating part 

of the coursework to the completion of mini-tasks throughout the first semester. These mini-tasks 

provided the students with template code for them to alter to implement more challenging tasks. 

Keeping a similar structure for the mini-tasks meant that students would be able to get to grips with 

the basics of Python through a highly-scaffolded approach.  

Our move to Python also meant that Dewis (2012) could be used to electronically assess the mini-

tasks. Dewis is a fully algorithmic open-source web-based e-Assessment system which was 

designed and developed at UWE (Gwynllyw and Henderson, 2009). The e-assessment of computer 

programs had already been used at UWE for a number of years using the Dewis system in a project 

involving a collaboration of the Mathematics and Computer Science groups (Gwynllyw and Smith, 

2018). In that project, the e-assessment of C-programs was performed with the Dewis system 

marking both the output and the structure of students’ computer programs.  

2. Methodology 

2.1. Overview of the Numerical Analysis module 

In this Case Study we considered the 30 credit optional module Numerical Analysis, which is 

available to final year students on the BSc (Hons) Mathematics course at UWE. The module covers 

the implementation and analysis of a number of numerical methods applied to a range of 

mathematical problems and is taught over the whole academic year. Each week, students attend a 

two hour lecture, and a one hour computing lab. Additionally, all students are timetabled to an 

optional one hour drop-in session for the module.  

The first semester concentrates mainly on the numerical solution of initial value problems (IVPs) and 

covers the topics of 

• Runge-Kutta (RK) and Linear Multistep methods (LMM); 

• Error analysis – mostly local truncation error analysis (including adaptive time-stepping); 

• Linear stability analysis. 

 

Also in this semester students are introduced to the topic of the finite difference method applied to 

boundary value problems. The second semester concentrates on numerical solutions to partial 

differential equations.  

2.2. Teaching Approach of Python 

The implementation of the teaching of Python started in induction week, where all final year 

Mathematics students were invited to an ‘Introduction to Python’ course run by a team of academics 

from the mathematics group. Those final year students who had chosen the Numerical Analysis 

module were informed beforehand that participation at this day-long course was considered to be 

essential. This introduction to Python course was through the Spyder integrated development 

environment (IDE). This IDE was chosen due to its simplicity and shallow learning curve. Although 

this introductory course was not written specifically for the Numerical Analysis module, a part of the 

course content was motivated by the requirements of that module. The overall syllabus of this course 

was: 

• creating and running simple scripts; 

• basic commands in Python; 
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• the process of identifying and correcting bugs; 

• variables and data structures (including lists); 

• loops; 

• logic and conditional statements; 

• creating and using user-defined functions; 

• importing libraries and files. 

For most students this was their first exposure to Python. However all students would have been 

introduced to programming basics, albeit using Maple, in their first year at UWE. 

In the Numerical Analysis module itself, the teaching and practice of Python was concentrated within 

the first semester. In the second semester, students were supplied with Python code to implement 

the methods with very little coding changes required on their part. Standard Python was used 

wherever possible to implement and analyse numerical methods without including additional 

libraries.  

For implementing the actual numerical schemes (RK and LMM), as described in Section 2.1, 

students were supplied with three files, as shown in Table 1, that they were required to modify.  

Table 1. Details of the three Python files provided to students. 

File name Description 

main.py The main program, which sets the numerical parameters, defines the initial 

value problem and implements the method. 

method.py Contains the function ‘calculate’ that defines the numerical method. This 

function receives the problem and numerical parameters and returns arrays 

containing the numerical results. 

output.py Contains functions that present the numerical results, both as files 

containing data values and as graphical output. The graphical output uses 

the ‘matplotlib’ library. 

 

The Numerical Analysis module introduces students to different aspects of computer programming. 

For example, throughout the semester, students were exposed to the use of loops, both of fixed 

number of iterations and, for the case of variable time-stepping, conditional (while) loops. Linear 

stability analysis exercises required students to determine exponential growth/decay and hence, in 

producing graphical output, they had to consider the use of log scales. Students were required to 

use complex variables in their computation of linear stability threshold values (e.g. having expressed 

a coupled system of real-valued initial value problems as a pair of decoupled, possibly complex-

valued, initial value problems). In order to implement the numerical methods, students needed to be 

proficient in the use of arrays (lists). This involved the case of static arrays (fixed known length 

typically for the case of fixed time steps) and dynamic arrays (typically for the case of variable time-

step methods) and to recognise differences in their manipulation. Together with the use of arrays 

(lists), students are exposed to the use of list comprehension (constructing arrays in a concise 

manner in one expression incorporating loops and conditional statements). In the coverage of 

boundary value problems, students had to identify the representation of a matrix by a list of lists. In 

addition they were introduced to functions from the ‘numpy.linalg’ library for solving a linear system. 

We should note that the Numerical Analysis module was not intended to represent a fully 

comprehensive course on programming, but instead the important basic programming skills relevant 

for numerical analysis. New concepts were introduced when relevant to the material being covered. 
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2.3. Assessment overview 

The assessment in this module is composed of an end-of-year exam (75% of the module mark) and 

a coursework (25% of the module mark). The coursework is partitioned into two parts as follows: 

Part One: worth 20% of the coursework mark takes the form of four mini-programming tasks and 

has four staggered deadline dates throughout the first semester. 

The main aims of these mini-tasks are to 

• encourage student engagement with the programming throughout the first semester; 

• prepare students for the more significant programming task in Part Two of the coursework. 

Part Two: worth 80% of the coursework mark is a hybrid written report/programming coursework 

with a mid-February deadline. Most of this coursework involves a given mathematical problem 

(typically in the form of coupled IVPs) and a given numerical method. Students are required to 

construct the numerical method in a form suitable to the problem. They are required to perform both 

theoretical and empirical analysis of the results. This analysis may include stability and/or local 

truncation error (LTE) considerations and require the students to comment on unusual behaviours 

in their results. 

2.4. e-Assessment of Python 

Given the main purposes of Part One of the coursework (engagement and preparation) we felt it was 

essential that the marking and feedback for all four mini-tasks to be as fast and supportive as 

possible (Race, 2014). We had employed this partitioning of the coursework model for a number of 

years (using Maple). Previously a manual marking process was employed but the workload involved 

in processing these student submissions, resulted in difficulties in producing timely feedback. In the 

conversion from Maple to Python, it was decided to implement instantaneous electronic marking and 

feedback of the Part One mini-tasks in order to address the above problem. The previous 

deployment of Dewis to e-assess computer code in C (Gwynllyw and Smith, 2018) meant that the 

development time required for Dewis to e-assess Python was significantly reduced. In fact, most of 

the Dewis code for marking C programs is the same for Python. Necessary alterations to the code 

included the implementation of a new set of ‘banned keywords’ for Python, that is, keywords in the 

student’s submission that were not allowed for security reasons. With Python being an interpreted 

language, as opposed to C being a compiled language, there were other changes required to ensure 

that memory and CPU limiters were applied to any execution of the student’s code on the Dewis 

server. It should be stated here that any such execution is made in a sandbox environment on the 

Dewis server to protect the server from malicious attack. 

To access the mini-tasks, students were directed to log-in to the University’s virtual learning 

environment (Blackboard) and access the appropriate Dewis assessment for the mini-task (using an 

automatically authenticated Learning Tools Interoperability link). Students were given three attempts 

at each of these mini-tasks. The Dewis system included an error-checker on the student’s 

submission so that, if a student’s code would not run on the Dewis server, then Dewis would report 

back the Python error report as part of the feedback. In such cases, we instructed Dewis not to 

decrement the number of submission attempts left for the student. Further details of each of the mini-

tasks is included in the next section. 

2.5. Particulars of the Python Mini-Tasks  

All four tasks in Part One of the coursework relate to numerical methods applied to the solving of the 

first order initial value problem: 
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𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦),               𝑦(𝑡0) = 𝑦0 ,                                                         (1) 

or a coupled form of (1). Currently these four mini-tasks are as follows: 

Mini-task 1: This is the only task that does not require the student to submit Python code. The 

purpose of this task is simply to ensure that students know how to operate Spyder and understand 

the structure of the supplied code. The student is given access to Python files for implementing 

Euler’s method to solve (1). The supplied Python files implement Euler for specific values of the 

problem parameters 𝑓(𝑡, 𝑦), 𝑡0, 𝑦0 and numerical parameters ℎ and 𝑛. On attempting an e-

assessment, the student is given different values of these parameters and they are asked to obtain 

the numerical approximation of 𝑦(𝑡) for a given 𝑡. Therefore the student is tasked with altering the 

‘main.py’ file (see Table 1), to run their code in Spyder and to recognise which time-stage (𝑖) 

corresponds to the required value of 𝑦(𝑡).  

Mini-task 2: For this task students are required to alter the code supplied to them in mini-task 1 so 

that the code implements the Modified Euler method. Specifically, the student is required to submit 

to Dewis their modification of the ‘method.py’ file which contains the function  

calculate ( 𝑓, 𝑡0, 𝑡𝑛, 𝑦0, 𝑛).         (2) 

where the system parameters in (2) are as for the initial value problem (1) and 𝑓 represents a Python 

function. The numerical parameter 𝑡𝑛 is the final time value and 𝑛 is the number of time steps. These 

two numerical parameters thus determine the size of the time-step, ℎ. 

With regards altering the supplied code, the students were instructed that they needed to only alter 

the interior body of the ‘calcuate’ function in (2), that is, they were required to leave the function’s 

parameter listing and return types (the arrays [𝑡𝑖], [𝑦𝑖]) unaltered. 

On submission of their ‘method.py’ Python code into Dewis, the system performs some security 

checks and then runs the student’s code four times using the following instances of the derivative 

function 𝑓(𝑡, 𝑦): 

(𝑖)  𝑓(𝑡, 𝑦) = 0,      (𝑖𝑖)   𝑓(𝑡, 𝑦) = 𝑐1,      (𝑖𝑖𝑖)   𝑓(𝑡, 𝑦) = cos(𝑐2𝑡),     (𝑖𝑣)   𝑓(𝑡, 𝑦) = cos(𝑐3𝑡) +  sin(𝑐4 𝑦),   

where 𝑐1,  𝑐2, 𝑐3 and 𝑐4 are constants randomly generated by Dewis. 

For each instance (i)-(iv) of running the student’s code on the Dewis server, Dewis also runs the 

corresponding model solution code and compares the [𝑡𝑖], [𝑦𝑖] output arrays from the two runs. If the 

generated arrays have the same values, then the student’s code is deemed to have been successful 

in its running of the modified Euler method for that particular derivative function. However, the 

student only receives full marks if all four runs are deemed successful. 

The purpose of the four distinct runs is to help provide tailored feedback for cases where the student 

code does not achieve full marks. In such cases, we want students to investigate for themselves the 

reason for any errors. However, the four runs give a mechanism for suggesting to the student the 

areas of their error. For example, if the student’s code gives correct results for derivative functions 

(i)-(iii), but not for (iv), the feedback would suggest that the student investigate whether the 𝑦 

dependency in the 𝑓 function has introduced the error. The student would be advised to check the 

values they used in the second parameter of any call made to the 𝑓(𝑡, 𝑦) function.  
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Mini-task 3: Students are required to alter the code supplied to them in mini-task 1 so that the code 

implements the Runge-Kutta 3/8 code for a coupled system. Specifically, the student is required to 

submit to Dewis their modification of the ‘method.py’ file to contain a function  

calculate (𝑓, 𝑔, 𝑡0, 𝑡𝑛, 𝑦0, 𝑢0, 𝑛)        (3) 

to numerically solve the coupled system 

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦, 𝑢);     𝑦(𝑡0) = 𝑦0; 

𝑑𝑢

𝑑𝑡
= 𝑔(𝑡, 𝑦, 𝑢);     𝑢(𝑡0) = 𝑢0. 

The students are instructed that function (3) is required to return the arrays [𝑡𝑖], [𝑦𝑖], [𝑢𝑖]. 

The marking process in mini-task 3 is similar to that in mini-task 2 in that four different runs are 

performed with different characteristics of the 𝑓, 𝑔 functions in order to facilitate the feedback in the 

event of any errors. For example, it is only in the fourth run that the case of a fully coupled system is 

considered, whilst the third run corresponds to the case of two decoupled problems, i.e., effectively  

𝑓 = 𝑓(𝑡, 𝑦)  and   𝑔 = 𝑔(𝑡, 𝑢). 

Mini-task 4: Students are required to alter the code supplied to them in mini-task 1 so that the code 

implements an Adams-Bashforth-Moulton (ABM) method (3/2-step) together with Heun’s 3rd order 

method as the ‘start-up’ method (two time-steps). In addition, students are required to implement 

this method in as efficient a manner as possible with respect to the number of calls made to the 

derivative function 𝑓(𝑡, 𝑦). 

The marking process in mini-task 4 is an extension of that used in mini-task 2. The same function 

types are used but, in addition, for the case of errors occurring, Dewis investigates whether the 

student errors occurred in the Heun start-up method or in the subsequent ABM method. 

In addition, each running of the student code is checked for efficiency. In running the student’s code, 

Dewis monitors the number of times the derivative function is called and hence measures the 

efficiency of the student’s code in this regard. The reason for doing this is that, with the ABM method 

being a linear multistep method, the number of calls to the derivative function can be reduced 

significantly by storing the most recent values of the derivative within variables (or an array) that is 

updated at each time-step. This is a desirable approach and one which the students were 

encouraged to take. 

In terms of the marking of this mini-task, three of the five marks were awarded for correct results for 

the [𝑦𝑖] array and two of the marks were awarded for the efficiency of the implementation. If a 

student’s scheme was close to optimal efficiency their submission would be awarded one of these 

two marks. 

3. Results  

With Part One of the coursework, students were strongly recommended to use the weekly drop-in 

session to discuss any issues they had with their submissions. The intent of this part of the 

coursework was to encourage participation and discussion. At any time during which these mini-

tasks were open, students could access their Dewis feedback which included a link to retrieve their 
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submitted code. This facilitated the feedback process with students using this feature to discuss their 

code submission with the academic on duty. 

At the end of the suite of Part One mini-tasks, we investigated all the cases where students’ code 

was in error, to determine whether the feedback they received was appropriate to their submission. 

This was found to be the case. In addition, we recognised further possible avenues for enhancing 

feedback which is to be implemented in future years. Further additions to the mini-tasks are planned 

based on our experience in marking Part Two of the coursework. For example, from marking the 

2019/2020 coursework, it seems clear that students struggle to implement a LTE estimator based 

on Richardson’s extrapolation. Hence we plan to include an additional mini-task for obtaining LTE 

estimators. Our experience of common student errors in the coding of LTE estimators will be used 

in the design of this task’s marking and feedback mechanisms.  

4. Discussion 

Following the successful introduction of Python into the Numerical Analysis course, it was decided 

to teach Python, instead of Maple, to our first year Mathematics students in the 2019/20 academic 

year. Python was taught within an existing Calculus and Numerical Methods course and students 

attended a two hour computer practical class every week for the first semester. The aim of the course 

was to learn Python while performing mathematical investigations. Students were introduced to the 

SymPy, NumPy and Matplotlib libraries which provide extra commands for symbolic and numerical 

calculations and plotting. Towards the end of the course programming concepts were introduced 

such as functions, conditional statements and loops.  

Python has been used for the two most recent runs of the Numerical Analysis module. For both runs, 

the final year students have had extensive exposure to Maple at previous levels, but neither have 

benefitted from our newly introduced Python teaching in the first year. Hence, it is encouraging to 

note that we have not detected any decrease in student performance nor understanding in 

programming when compared with previous years’ module runs (when Maple was used). This is 

evidenced by average coursework marks and pass rates for this module being at similar levels to 

previous years. Student feedback from end of year module evaluations shows that the use of Python 

has been very positive; students recognise the importance of learning a programming language that 

is relevant to industry. Students have also stated that they appreciate the Dewis-generated feedback 

augmented by tutor support in the drop-in sessions. 

Having introduced Python in the first year of the BSc Mathematics course the students will develop 

their skills further through its implementation in second year modules from the 2020/21 academic 

year. Further, the teaching of Python is embedded into our new problem based learning curriculum 

which will roll out from 2020/21 onwards;  Dewis mini tasks will be used to support students learn 

Python in their first year, which will enable more challenging tasks to be set throughout the rest of 

their studies. 
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1. Background 

In the article ‘Moving with the times – a new A level Further Mathematics Unit: Further Pure 

Mathematics with Technology (FPT)’, Lee and Button (2013) wrote about the optional A level Further 

Mathematics unit that featured programming. Since then both GCSE and A level 

Mathematics/Further Mathematics have been revised (see Baldwin and Lee, 2017, and Glaister, 

2017).  

A level Mathematics and Further Mathematics changed for first teaching in academic year 2017/18 

and thus, after completing these maths qualifications over two years, those students would have 

predominantly entered university in the current academic year 2019/20 (Note: a small number may 

have completed the new courses in one year and entered university in 2018/19). A level Mathematics 

is still the most popular of all subjects and in summer 2019 there were 91,895 entries in the UK; 

14,527 studied A level Further Mathematics (Joint Council for Qualifications data). However, this 

was a decrease of 5.9% and 10.1% respectively from 2018. 

The major change is that A levels are no longer modular courses; students are assessed by end of 

course examinations. The content of A level Mathematics is completely prescribed; however, the 

content of A level Further Mathematics still retains some element of choice over some of the content. 

The Further Pure with Technology unit has been updated and is still available as an optional 

component for Further Mathematics students and in this short update we will address its role and 

how it can support pre-university students in developing their mathematical programming skills. 

2. Aim and philosophy of FPT  

The aim and philosophy of FPT is to support students in developing their skills in using technology 

for pure mathematics. There are three topics studied: investigation of curves, differential equations 

and number theory. In investigation of curves students use a graph-plotter and Computer Algebra 

System (CAS); in differential equations they use a graph-plotter, CAS and a spreadsheet; in number 

theory they use a programming language (they are required to use Python in this course). The 

common approach in all of these topics is that students utilise the power of technology to find or 

generate mathematics that would be time-consuming or difficult to create by ‘hand’, and once they 

have done so they use their mathematical skills to explain the results obtained.  

For example, in the number theory topic students work on questions such as that in Figure 1. 

mailto:Stephen.lee@mei.org.uk
mailto:Tom.button@mei.org.uk
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Figure 1. Example number theory question from FPT. 

Technology is used here to systematically work through a large number of cases but, once the results 

have been obtained, students are expected to give a rigorous mathematical reason for the statement 

in part (iii). In FPT the emphasis is on students having an understanding of the mathematics and for 

the technology to support them in this; the questions are intended to model the practice of searching 

a large number of cases but then being able to justify and explain any results. 

In FPT all the programs are written in Python. However, this is not a programming course; the only 

expectation of the students is that they can use the mathematical functions built-in to Python with 

the ‘for’ and ‘if’ commands. They are then expected to be able to write short programs to perform 

exhaustive (or brute-force) searches. Number theory is an ideal topic for this as many of the problems 

relate to positive integers which are straightforward to generate with the for command. This is also 

a valuable topic as students only real experience of number theory otherwise is a brief introduction 

to the concept of prime numbers lower down the school. Many A level Further Mathematics students 

will be considering progressing to a degree in Mathematics. Studying number theory in A level 

Further Mathematics provides an opportunity for them to meet a topic that more resembles 

undergraduate mathematics than much of A level Mathematics. 

An example question from the specimen paper is shown in Figure 2. This demonstrates the standard 

students are expected to reach by the time they take their examinations. The full specimen paper 

and other related information on the FPT component of Further Mathematics can be found on the 

MEI website: www.mei.org.uk/fpt  

3. FPT in the new ‘2017’ curriculum 

As stated in section 1, for the new 2017 specifications A level Further Mathematics has some 

compulsory content. More specifically, 50% is a prescribed ‘pure maths core’. For the remaining 50% 

of the content, different options are available. These options vary between awarding organisations 

(AQA/Edexcel/OCR/OCR (MEI)) and may include mechanics, statistics, discrete/decision maths and 

additional pure maths. For the OCR (MEI) specification FPT makes up 16⅔% of A Level Further 

Mathematics content. 

OCR (MEI) A level Further Mathematics also allows students to take additional options, with the best 

scores contributing to their A level grade, so FPT could be offered to students as a useful additional 

option, without committing to it being part of their overall mark.  

One of the key points to emphasise is that even within the parameters required for devising a 

specification from 2017, MEI was able to develop an innovative curriculum involving aspects like 

FPT. An equivalent to FPT is not found in any of the other specifications.  

http://www.mei.org.uk/fpt
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Figure 2. Example question from the FPT specimen paper. 

The continuation of having an FPT component, when the new curriculum changed in 2017, also 

aligns with several of the recommendations of the Smith review into post-16 mathematics 

(Department for Education, 2017). Smith highlighted use of technology as a key area to maintain 

pace with the changing world and for teaching and the wider workforce. MEI will continue to innovate 

in mathematics education to support education and industry in this area.  
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Abstract  

The paper reports on a programming course for undergraduate Mathematics students in their 2nd 

year, with some parts compulsory for single-subject students. Assessment takes the form of several 

programming projects. Formative feedback as well as summative assessment is aided by automated 

unit tests, which allow for rapid and consistent marking, while focussing marker’s time on students 

who require the most help. 

Keywords: programming, automated assessment, unit tests, Java. 

1. Introduction 

Computer Science originates in Mathematics; computers are based on mathematical rules and, early 

on, programming was seen as a mathematical activity (Dijkstra 1974). In fact, fundamental 

mathematical concepts like sets, functions, their domains and codomains, have their counterpart in 

modern programming languages. Vice versa, computer technology plays a central role for 

Mathematics, its applications and its importance in society; Jaffe (1984) wrote that “no reflection of 

mathematics about us is more striking than the omnipresent computer”, and this is even more valid 

in today’s environment.  

In that light, it is the author’s opinion that in undergraduate Mathematics, the teaching of computer 

programming should be treated on equal footing to other core mathematical subjects, both in 

importance and level; though not everyone agrees.1 

Certainly, there are substantial differences to usual Mathematics teaching. For one, the UK 

admissions process filters applicants by their mathematical abilities, but not their programming 

experience; hence a wide range of backgrounds needs to be catered for.  

More importantly, in feedback and marking on programming tasks, an even more prominent focus 

than usual needs to be put on outcomes: computer programs need to produce the correct result, 

exactly adhering to the specified problem, and unlike perhaps in usual Mathematics assessment, 

there is typically no meaningful partially correct solution, unless it implements partial functionality. 

Without doubt, writing well-structured and well-documented programs is important (“A programmer 

is ideally an essayist who works with traditional aesthetic and literary forms as well as mathematical 

concepts [...]” – Knuth 1996, p.2); but first and foremost, students as well as teachers need to verify 

whether code works correctly. To that end, they need to test it with input data; just reading the source 

 

1 “I never wanted to study coding and won't need it in my future profession so I don't see the 

practicality and relevance of it. If I wanted to learn about coding, I would have studied computer 

science - this is a waste of my time.” – Anonymous student feedback 2018/19. 

mailto:henning.bostelmann@york.ac.uk
https://orcid.org/0000-0002-0233-2928
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code is not a reliable way of verification. However, taking this in earnest for marking involves a large 

amount of tedious manual work, and might therefore be neglected for time reasons. 

In the present case study, we report on a programming course for mathematics students in which 

feedback and marking is assisted with automated methods, more technically, automated unit tests. 

These are used both for giving rapid feedback to students in computer practicals, and for summative 

assessment of programming projects.  

They also aid consistency of marking and remove bias, while focusing marker’s time on important 

tasks such as written feedback. 

2. Background 

The module in question is an introductory programming course for Mathematics students in the 

second year. It has been taught, in slightly varying forms, at the University of York since the academic 

year 2013/14, with the author as module leader.  

2.1. Module design 

The 10 credit module is intended for single subject Mathematics students in their 2nd year, students 

on some joint programmes, as well as Natural Sciences students who may take it as an elective. It 

has no prerequisites beyond Calculus and Algebra at first-year level; in particular, no knowledge of 

programming is assumed, even if a proportion of the audience has varying levels of experience with 

programming in some context. 

The syllabus is split into a basic part, introducing procedural programming (variables, expressions 

and assignments; data types, including floating point numbers; loops and conditional structures; 

functions; arrays; character strings; input/output), and an advanced part, including fundamentals of 

object-oriented programming (dynamic methods and inheritance). These are presented along 

applications from Mathematics, such as approximation algorithms, which are not systematically 

taught (beyond a brief discussion of roundoff errors in floating point arithmetic), but presented as 

examples in exercises or lectures, without formal justification. Besides programming techniques, the 

module also aims to teach associated skills, including documentation.  

 

Figure 1: Participant numbers by academic year; until 2016/17: optional module 

‘Programming and Scientific Computing’, from 2017/18: compulsory module 

‘Mathematical Skills 2’. 
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Until the year 2016/17, all of these topics were taught as one optional module ‘Programming and 

Scientific Computing’. From 2017/18 on, the content was incorporated into a new compulsory module 

‘Mathematical Skills 2: Programming and Recent Advances’: Here students are taught the basic 

parts of the programming syllabus (approximately 2/3 of the material) during the Autumn term; in the 

Spring term, students can choose between either the advanced programming syllabus or an essay 

topic in Pure Mathematics, Applied Mathematics or Statistics. (These choices will not be discussed 

further in this article.)  

Participant numbers have been rising year on year (Fig. 1) and now exceed 200 students.  

2.2. Technical setup 

The module aims to teach foundational programming techniques, not (only) for use in mathematical 

applications, but as a general employability skill. To that end, a general purpose programming 

language is used, rather than an application-, product-, or vendor-specific system, which should 

demonstrate all conceptual aspects of a modern programming language (the author includes type 

strictness here). It is methodologically difficult to determine which languages are most frequently 

used in practice, in particular in an industry setting; that said, existing surveys indicate (TIOBE, 2020; 

Bissyandé et al., 2013) that languages of the C family (including C++, Java and vendor-specific 

derivatives) continue to be used widely, if not overwhelmingly. Of these, Java appears to be the best 

suited in a beginner’s teaching setting. 

As a development environment for Java, the module uses BlueJ, which was developed specifically 

for education purposes. In a comparatively simple user interface, BlueJ allows students to easily 

invoke individual functions of their programs, as well as offering a built-in debugger (also usable for 

demonstrations in lectures) and integrated unit test tools, which will become important below. 

While BlueJ was originally intended for an ‘Objects First’ approach (Barnes and Kölling, 2016), the 

module uses it for a more traditional procedural approach for its basic part, along the first chapters 

of Nielsen (2009), with object-oriented techniques introduced only later. 

Beyond the standard installation of BlueJ, the module uses – as an example for an external third-

party library – the Apache Commons Math library (Apache 2020). 

Teaching materials are provided to students via a Moodle-based VLE, which is also used for some 

randomised multiple choice quizzes (cf. Sec. 4). 

2.3. Automated assessment 

As a particular feature, and focus for this case study, the module aims to use automated assessment 

methods for rapid feedback to students as well as for summative assessment. Specifically, teacher-

provided automated unit tests are employed for this purpose. 

Unit tests are short pieces of program that run the developer’s code with certain input data, and 

compare its output to expected values. They are a longstanding and commonly used tool in software 

development (see, e.g., Runeson 2006). Here we use the same techniques for checking that a 

student’s work conforms to the specification given in an exercise description.  

This allows student as well as teachers to verify rapidly whether a student’s work is functionally 

correct. It is a common misconception that programming work (even of a simple kind) can reliably 

be checked by reading its source code – even missing out on small errors might make the reader 

assume that the program is ‘correct’, whereas it actually never performs the desired functionality. In 

other words, student work (as any other program) needs to be tested with relevant input data, rather 
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than cross-read by the teacher. Unit tests allow us to do this efficiently, freeing up teacher’s time for 

other important aspects of the feedback process. Usage of these tests in formative and summative 

assignments is further described in Sec. 3 and 4 respectively. 

Note that all unit test code in the module is provided by the teacher – students are not required to 

write unit tests or to understand the program code underlying them, they simply invoke them from a 

graphical user interface. Test code uses the unit test framework JUnit 4 (JUnit 2020), which is 

embedded into BlueJ. 

3. Teaching and formative assessment 

Teaching is centred around 9 computer practical (6 for the basic and 3 for the advanced part). Each 

practical is supported by 2 lectures which aim to introduce the relevant programming techniques and 

demonstrate examples. 

Each practical comes with an exercise sheet that is released to students a few days in advance of 

the session, and a corresponding code template. During the session, students work independently 

on the exercises, but with a teacher present for help; the student/teacher ratio is approximately 15:1.   

 

Figure 2: Unit tests within the practical materials. Screenshot from BlueJ 

Unit tests are used in the practicals for rapid feedback. That is, unit tests are supplied with the code 

template for each exercise. Students will write code for the relevant exercise, and are requested to 

first run their code with relevant input data to verify that it works correctly. Once completed, they run 

the unit test and are presented with a ‘traffic lights’ result (Fig. 2). If the unit test passes, they continue 

to the next exercise; otherwise they can ask a teacher for assistance. (Failed unit tests will display a 

brief explanatory message, but this is often not detailed enough for students to localise the problem.)  

Programming to pass these unit tests does require students to stick to the specifications on the 

exercise sheet very strictly, in particular to use the correct signatures (function or method names, 

input and output parameters and their data types), if not already given in the code template. This is 

in fact an intended learning outcome: in any collaborative programming setting – as students would 

encounter it in real-world applications – sticking to an agreed programming interface is crucial. 



 

40 MSOR Connections 18(2) – journals.gre.ac.uk 

Each exercise sheet contains more exercises than can be solved in one hour (except by the most 

experienced students); the remaining exercises are left as homework, with no hand-in, but with 

feedback available via unit tests, and questions answered in the following practical session.  

4. Summative assessment 

The module is assessed on open assessments (Table 1), mainly consisting of 3 programming 

projects. These projects are marked semi-automatically; see Sec. 4.1 for details. Since the number 

of students on the module makes it impossible to set individual project topics, collusion may present 

an issue; we discuss this in Sec. 4.2.  
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Programming project 1  1 week 5% 50-100 100% 1 day n/a 

Programming project 2 6 weeks 25% 200 66% 3 weeks 20 min 

Programming project 3 7 weeks 50% 300 50% 3 weeks 30 min 

Online quizzes 1 week 15%  100% immediate n/a 

Careers exercise 2 weeks 5%     

Table 1: Assessment components in Mathematical Skills 2, for students who choose the 

advanced programming part. Length of project given in Lines of Code (LOC) excluding 

documentation. All numbers except mark weights are approximate and may vary 

between years. 

In addition to the projects, assessment includes a number of online quizzes based on multiple choice 

questions drawn from a random pool, which are presented and automatically marked via the Moodle 

VLE, and which  students complete in their own time. These should be seen mostly as reading 

comprehension tests: they can be answered from absorbing the lecture material, without actually 

writing a program. The intention is to ease beginner students into the topic and allow them to collect 

marks for basic understanding. A careers exercise, which also counts towards the module mark, is 

not further discussed here. 

4.1. Programming projects 

In setting and marking the programming projects, assessment must be divided into two main parts: 

functional aspects (i.e., whether the code works correctly to specification) and non-functional aspects 

(whether the code is easy to read, well-structured and well-documented). In both aspects, student 

numbers require a distributed approach to marking, raising potential issues with marking 

consistency. 
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In all projects, functional aspects are marked with the aid of unit tests, which are prepared by the 

examiner in advance, but are not released to students. Student submissions are first verified against 

these unit tests, and a mark as well as an error report automatically generated. Marks are awarded 

entirely on the criterion whether the unit tests pass (typically 1 mark per test). The automated score 

for the functional part is only modified by the lead marker, and only under strict conditions (typically, 

when an entire part of the project fails to work due to a minor deviation, such as a mis-named 

function). 

This semi-automatic marking process can be used in two ways: First, it is possible to set rapid 

feedback assignments (Project 1, cf. Table 1) which are marked exclusively on functional aspects, 

and almost fully automatically. Marks and automated error reports can then be released as little as 

1 day after the deadline; only submissions with particularly low scores receive separate written 

feedback by the examiner. Verbal feedback to all students who request it is then given in the following 

practical session.  

Second, for longer projects (Project 2 and 3), a distributed marking process is used: Automated 

reports are generated and shared with 3-4 markers; their role is then to determine why (not whether) 

the code fails to work, and to write corresponding feedback to students. This guarantees objectivity 

for this part of the assessment: the score is not subject to an individual marker’s decision. It also 

allows markers to spend more time on feedback (rather than manual testing), and reduces possible 

oversights. In addition, markers assign scores for non-functional aspects along a structured marking 

guide and with brief per-item feedback; these items relate to the overall code structure, specific 

aspects of the code (e.g., expected function calls), adherence to code style conventions, and 

completeness of the documentation – students are typically asked to add Javadoc comments to their 

code. 

We found the automated marking process to work smoothly in general, though some submissions 

need manual fixing – for example, where students use an incorrect directory structure in their 

submitted code. These errors typically occur for 1-2% of students and are corrected by the lead 

marker without penalty.  

Use of automated marking in this way requires some care, because students can easily fail a large 

number of these tests by small omissions that may not immediately be obvious. Exact adherence to 

the given specification (in particular signatures) is required for tests to yield marks. To some extent, 

this is only a reflection of the reality of the subject: in software projects, specifications and 

conventions must strictly be followed to arrive at a working product.  

On the other hand, some mitigation against such ‘catastrophic failures’ needs to be provided. To that 

end, the code template for every project contains a single unit test (the ‘declaration test’) that verifies 

not the functionality, but rather the function declaration and signatures in the student’s code, using 

the Java Reflection API. Students are advised to use this test before submission to verify their basic 

code structure and fix any discrepancies. 

4.2. Academic integrity 

Project-based open assessment is an appropriate format for this module, since it comes fairly close 

to a realistic programming setting. While assessment by closed exam would be possible (and is 

sometimes used in similar situations, often with restriction on Internet access and availability of other 

resources), it has severe drawbacks: First, because of the limited time available, only the most 

elementary question can be asked, and aspects e.g. of code structure and documentation need to 

be dropped; second, it is a highly artificial setting which does not occur in real-world applications – 

no programmer would, in practice, do their work without Internet access.  
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However, since student numbers prohibit the setting of individual project topics, plagiarism and 

collusion between students is a significant concern, as probably with most other open assessments 

in Mathematics. In fact, it is quite common to see some students closely following their peer’s 

solutions, with changes only in naming of variables, whitespace, etc. While rare, it has also occurred 

that students submitted almost literal copies of each other’s work, sometimes in the form of binary 

identical files. 

 

(a) 

 

(b) 

 

(c) 

Figure 3: Programming marks vs. core marks in 2018/19. (a) Frequency of marks for the 

programming components; (b) frequency of differences between programming and core 

marks; (c) scatter plot of individual student’s results. 

In order to deal with this situation, marking of projects is assisted by an automatic similarity check. 

Specifically, we make use of the software JPlag (KIT, 2020; Prechelt et al., 2002) which is able to 

highlights similarities in code between student’s submissions, ignoring trivial changes such as 

whitespace, comments, renaming of identifiers, and swapping of lines. Similarities identified by the 

tool are then investigated manually. We typically found relatively high numbers of similarities in 

Project 1 (sometimes affecting more than 5% of the submissions in various clusters), which are dealt 

with by means of mark reductions. After that, collusion cases in projects 2 and 3 are rare. 
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5. Student performance 

Since programming appears to require somewhat different skills than typical Mathematics modules, 

and the module counts towards the degree classification, it is fair to ask how student results on the 

module compare with those in more traditional subjects. 

To that end, we compare summative marks from the compulsory, ‘basic’ programming component 

with exam results from two other modules that most participants take in the same term, Vector 

Calculus and Linear Algebra; the average of these two will be referred to as the ‘core’ mark. Only 

students which took all three modules are included in the comparison; also, students who missed 

any of the assessments, or who had resits ‘as if for the first time’ approved for any of them, have 

been excluded from the analysis. 

The results for 2018/19 are shown in Fig. 3. One notes that the mark distribution for the programming 

part alone (Fig. 3a) is within usual expectations, though possibly somewhat high in the 80-100 range, 

as is typically seen with coursework-based assessments. The differences between programming 

marks and core marks (Fig. 3b) show that there is a good correlation between general Mathematics 

performance and marks in programming, while there are a few wide outliers. This is confirmed by 

the scatter plot in Fig. 3c. In short, while there are some Mathematics students with good marks that 

struggle with programming tasks (and vice versa), these seem to be an exception rather than the 

rule. 

6. Conclusions 

The module discussed in this paper demonstrates that it is possible to integrate a generic 

programming course as a compulsory element into a Mathematics programme. It scales to the size 

of undergraduate cohorts, with student performance in line with expectations. Automated unit tests, 

when suitably set up, help with providing rapid feedback, ensuring consistency of marking, and 

making prudent use of staff resources.  
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1. Introduction 

Python is a high-level programming language that is interpreted and executed by a runtime, most 

commonly CPython. It is fast becoming one of the most popular languages due to its flexibility and 

interoperability with optimised tooling and libraries. Moreover, Python is syntactically simple, which 

makes it ideal as a programming language for teaching and learning as a first language. The fact 

that Python is interpreted and executed together at execution time gives Python the ability to perform 

deep introspection, which also makes it an excellent language for automated assessment. 

The marking criteria for code can usually be categorised as either style or operation. For beginner 

programmers, operation – whether the code performs the intended task correctly – is arguably more 

important. As experience grows, it becomes increasingly important to write well-structured and 

idiomatic code that is easy to read (style). More advanced programmers might also consider how 

robust their code is; how it handles expected or unexpected errors. For introductory programming 

courses, assessments should place greater emphasis on operation and less on style. However, 

including marking criteria for coding style will help encourage good coding practice, so it might be 

beneficial to include some style criteria. 

Automated assessment offers various advantages over manual assessment, where an assessor 

would run the students’ code and check the output by hand. Running a test suite over a large 

collection of student’s code by hand can be extremely time consuming, whereas an automatic tool 

can run tests in the background. Automated test suites can also run in parallel, which can lead to a 

greatly decreased total testing time. However, automated tests are more time consuming to set up. 

The author is currently, at time of writing, teaching Python programming as part of a first year 

undergraduate module, and is designing the assessment of Python code for this course. This 

assessment is intended to be marked automatically. In this article, we give a quick overview of some 

techniques, packages, and tools that may be useful for automatically assessing Python source code. 

At the end of the paper, we give a short example of a function that could be used to mark a script-

based submission. 

2. Assessing operation 

Arguably the most important aspect of assessing the operation of source code is checking 

correctness. First and foremost, code should always produce predictable and repeatable results, 

given the same environment and input, which can be tested by a suite of individual unit tests. A unit 

test is usually a small function that tests a specific aspect of a program using assertions. The Python 

Standard Library contains the unittest module, that provides support for writing and running unit tests 

on a Python module (program). There are third party alternatives that offer a much more flexibility 

and features, the most popular of which is Pytest (2020). 

Automated suites of tests provide a much more consistent approach to checking correctness than 

manual tests – that is, a user (assessor) manually running each module/item with given input and 
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comparing output – and is usually much faster. On the other hand, test suites can be difficult to 

construct properly and require a larger investment of time to write. It might also be possible to link 

the running of the test suite automatically upon submission via a virtual learning environment (VLE), 

to provide almost real-time feedback to students, which is useful for formative work. (Integration of 

automated testing into deployment of code is widely used in industry, via continuous integration 

services, as a fail-safe against errors that could impact the function of the program.) 

There are, however, some practical concerns about using automated testing suites to test a cohort 

of student source code. First, the testing utilities mentioned above rely on predictable names and 

locations of source files. They rely on Python’s standard import mechanism to bring objects into the 

testing suite, and this mechanism requires hard coded names of packages/modules relative to a 

path recognised by Python. This is difficult to accommodate if each student’s code is stored in a 

separate directory or named according to some identifying information. (Many VLEs will 

automatically mangle the filename of submitted files to contain key information such as the 

submission identifier, student ID, submission time, and original file name.) Second, these tools are 

aimed towards testing specific elements from a large body of code, such as single function or class. 

It can be difficult to adapt them to test “script-like” Python files that execute immediately at the top-

level. 

These practical difficulties can be overcome without too much trouble. The first problem can be 

solved by loading the student’s code in a more controllable way. For example, we could write a small 

script that modifies the Python path variable to cause the import statement to look for code in a 

different directory for each submission. The test suite can then be executed once for each 

submission, controlled by the script, and we can be sure that every student’s submission is tested in 

the same way. The second problem can be mitigated by setting questions very carefully, or writing 

tests that execute submission files individually and check output by inspecting the stdout/stderr 

streams. This can cause some problems, because of the lack of standardisation for returning 

information from a script. (Printing to the terminal works fine in theory, but in practice string matching 

can be difficult, even if the form of the printed string is known; in general, this will not be the case.) 

2.1. Assessing robustness and good design 

A second aspect of testing operation of a source file is testing the robustness of code. For example, 

we might test how a student’s code reacts when an error occurs (while opening a file, for example). 

Code that handles such errors gracefully and potentially recover, if appropriate, might be described 

as robust. A more typical example would be to test if the student has used any type and value 

validation in their code to raise an appropriate exception (or assertion) if an argument is provided 

that is not valid. 

These features might not be directly related to the execution of an element in the program, but they 

are certainly part of good design. Since Python is not strongly typed, we cannot rely on a compiler 

to check that the types provided as arguments are valid and fulfil the requirements of the function. 

In practice, this can lead to obscure and unexpected errors that are difficult to fix. Stressing good 

practice and style should be part of every course on programming, regardless of level, although it 

will not usually be the most critical element of assessment. 

Other good design elements such as breaking repeated blocks of code into individual functions can 

be more difficult to test automatically, and instead will probably require somebody to read the code. 

Perhaps some of the tracing and debugging tools within Python (or newly introduce audit hooks, 

provided in CPython 3.8) could be used to check the usage of functions at runtime, but it is not 

obvious how to implement criteria for this task. 
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3. Assessing style 

In addition to the assessment of operation, the code can be analysed for compliance with specific 

style guide, such as the official Python style guide PEP8 (van Rossum, Warsaw and Coghlan, 2013). 

This is usually achieved using a linter, which inspects the code and compares the actual code as 

written to some idealised version. The resulting differences are reported back to the user via the 

terminal, or by some other means. Popular linting programs include PyLint (Logilab, n.d.) and Flake8 

(Stapleton Cordasco, 2016), although there are a large number of such programs available. These 

tools fall into the category of static analysis (analysing code without running it).  

Linters can detect syntax errors and typographical errors within code before the code is executed, 

which makes them particularly useful as part of a build and deploy pipeline in industry (such as in a 

continuous integration process). Some tools can also detect code that is not Pythonic. This means 

that the programmer has not made use of Python idioms in their code. For instance, it might detect 

when a programmer has written code for iterating over a list using a for loop over a range and 

accessing each item by index, rather than leveraging the iterator protocol. While technically correct, 

iterating over a list by index can often lead to errors if not done correctly and is frequently slower 

than the iterator equivalent, particularly if the element is accessed numerous times within the body 

of the loop. (Each lookup incurs a function invocation rather than a simple pointer lookup. This 

difference is miniscule but significant in large loops.) 

Generally, a linter will output a list of messages regarding issues with the code checked into the 

terminal, and it is up to the user to parse this list and generate a score, if necessary. The messages 

that are output can usually be customised to include only certain issues, such as syntax errors or 

convention items. It might be possible to access an application programming interface (API) for a 

linter and link this directly into an assessment script. 

4. Example 

We now give a short example function that would mark scripts submitted by students, which I 

supposed to plot a simple function using the Matplotlib library. We omit the code that handles finding 

and reading student code and the handling of edge cases for the sake of space.) 

from unittest import mock 

from io import StringIO 

import matplotlib.pyplot  

 

def mark_code(sub_code): 

    patcher = mock.patch(“matplotlib.pyplot”, autospec=True 

    mpl_mock = patcher.start() 

    try: 

        exec(sub_code) 

    except Exception as err: 

        return 0, “Your code did not execute” 

    patcher.stop() 

    if mpl_mock.plot.called: 

       return 1, “You plotted something, well done” 

    return 0, “You didn’t plot anything” 

The main step involved here are mocking the Matplotlib Pyplot module to test whether it was used 

when the submission code was executed. Once this is done, we can inspect the Mock object to see 

which routines have been called, in this case the plot routine. We execute the submission code inside 

a try block using the built in exec function. This replicates the way that Python executes code from 
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a command line. The function returns a mark (0 or 1) and some simple feedback. In this case, the 

submission would get 1 mark if the plot routine was called, and 0 otherwise. 

5. Conclusions 

The most important part of assessing Python code written by students is testing whether the code 

runs and meets the requirements of the exercise. This can be achieved using tools from the software 

testing facilities available for Python, such as the unittest module from the Python Standard Library, 

or the Pytest package. However, one should not neglect the importance of good coding style when 

writing assessments, even if this is only used formatively. Tools such as PyLint can be used to quickly 

assess the style of Python code, and provide useful feedback to students on how to improve the 

style of their code. 
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Abstract  

This case study discusses the use of the Numbas e-assessment system to assess computing skills 

across several modules in a mathematics undergraduate degree programme. The modules include 

basic computing, quantitative analysis of data, and numerical methods. Several approaches are 

discussed which fit with the teaching of SPSS, R and MATLAB, including randomised data files and 

questions which can replicate, and therefore mark, calculations made with R data frames and 

numerical algorithms, such as root finding and curve fitting. In each case, Numbas offers the 

opportunity to automatically mark and offer immediate feedback to the student. The application of 

questions inside a computing module is discussed, with a positive response from students to both 

practice material and hybrid tests, which include some automatic marking alongside submission of 

the students’ code for manual review. There is clear rationale for using an e-assessment system 

which is already familiar to students, with features such as adaptive marking and the scaffolding of 

questions, however limitations to the use of Numbas for this purpose are also discussed.  

Keywords: computing, e-assessment, Numbas, numerical, quantitative. 

1. Background 

1.1. Computing in the curriculum 

Modules dedicated to computer programming have been a compulsory component of the single-

honours mathematics degree programme at Newcastle University since 2015. The addition of 

computing is in common with many other mathematics departments in the United Kingdom 

(Sangwin, 2017), motivated by the increasing relevance of computers in mathematical teaching and 

research, and in the future career prospects of undergraduate students. The curriculum has included 

the teaching of two programming languages, R and MATLAB (the latter being phased-out, to be 

replaced entirely with Python by 2022), covering basic programming, statistical analysis and 

numerical methods. 

Most of the computing teaching follows the same format, with three hours of contact time each week. 

A one-hour lecture is used to introduce the theory behind the week’s content and to work through 

examples. In a two-hour practical that follows, students work through a “handout” of material, which 

may be either a physical handout or a digital version. 

1.2. The Numbas e-assessment tool 

Many mathematics departments take advantage of specialist mathematical e-assessment software, 

such as DEWIS (Gwynllyw and Henderson, 2009), Numbas (Foster, et al, 2012) and STACK 

(Sangwin, 2015), to automatically mark students’ work and offer immediate feedback. At Newcastle, 

where the software Numbas is developed, e-assessment is embedded into the mathematics degree 

programme across twenty-four modules. 

Following the CALM model (Beevers, et al, 1988), Numbas tests can consist of several questions, 

each of which may contain one or more parts which assess an answer. A student answer may be a 

mailto:christopher.graham@ncl.ac.uk


 

50 MSOR Connections 18(2) – journals.gre.ac.uk 

numerical value, mathematical expression (as in figure 1), or one of several other types supported, 

such as matrix input.  

 

 

Figure 2. Numbas can mark and give feedback on mathematical expressions. To the 

right of the student input (highlighted green to indicate a correct answer) is a preview of 

the student’s answer as interpreted by the software, which a student can check before 

submission. The settings of this test are such that the student receives immediate 

feedback, and has the opportunity to “Try another question like this one”, which re-

randomises the variables in the question, or to “Reveal answers” to see a full solution. 

This question has the option to “Show steps” to see a reminder of the chain rule, which 

is offered without a reduction in the available marks in this case. 

Some of the key features of Numbas were inherited from the CALM model, including advice for each 

question and the facility to scaffold a question into smaller steps. The variables in a Numbas question 

can be randomised to allow for many versions, each one with a corresponding full solution in the 

advice. This randomisation, alongside the immediate marking and feedback, makes the tool 

particularly powerful for formative use. One common complaint by students towards online 

assessment is its all-or-nothing marking. In response, a feature of adaptive marking was added, 

whereby the correct answer to a question part could be re-calculated, based on the incorrect student 

input to a previous part. This digitalises some of the discretion given by a human marker when 

awarding “error carried forward” marks. These features were important in the choice to use Numbas 

in computing modules. 

Numbas is an open-source tool and is made available to users outside of Newcastle through a public 

editor hosted by MathCentre (Newcastle University, 2020). Here, teachers can create and share 

content, with around 8,000 items available for reuse under an open access licence, including many 

of the examples in this case study. 

An example Numbas test 
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2. Motivation for using e-assessment in computing teaching 

Students working through handouts in computer practicals do so at their own pace, running and 

investigating the commands given to them. One of the key features of the handouts is formative 

questions, which help to reinforce the ideas covered, or to investigate a little bit further than is 

covered in the given material (see figure 2). These questions are typically located at the end of a 

section, and students work through them as they reach them. Students are encouraged to have a 

go at the questions before asking for help, including using documentation and online resources. A 

student may request help from a postgraduate assistant, but many will suffer in silence or skip past 

questions if they get stuck. The lecturer may often present solutions to the questions at appropriate 

points during the practical, delivered by display screens and microphone to the entire class. 

 

 

Figure 2. An excerpt from an early version of the handouts for stage one MATLAB 

computing. Exercises embedded inside the handout encourage students to consolidate 

their learning, but when and how to provide solutions poses a problem. 

Example content from a computing handout 
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Students work through computing handouts at very different rates, and the question of when to offer 

solutions to these questions is a difficult one. In a survey of students conducted at the end of the 

module in the 2019/20 academic year, 48% of 81 respondents agreed that the solutions presented 

by the lecturer were at the right time to help them with the handout questions, however 21% 

responded that these interactions were actually distracting. Students were split evenly over whether 

the solutions to the questions should be released immediately, or at the end of the practical. 

E-assessment offers a potential solution: marking and feedback can be offered as and when a 

student is ready to attempt a practice question. Several tools already exist for marking computer 

code, including the Moodle plugin Coderunner (Lobb and Harlow, 2016) and the INGInious 

assessment platform (Derval, et al, 2015), which run students` code and carry out unit tests to 

generate marks and feedback. However, we are often interested in the answers that students can 

interpret from their code, rather than the code itself, and this is exactly the sort of input that Numbas 

handles so well: numeric values, for example from a statistical analysis, or; mathematical 

expressions, such as a best fit polynomial for some data. We might also be interested in breaking 

down questions into smaller steps or using adaptive marking to account for errors in multi-part 

questions, both of which are accommodated by Numbas. Since the tool is already familiar to our 

students, it is a logical choice to adapt it for computing questions. 

3. Using Numbas to assess computing skills 

Each of the examples of using Numbas to assess computing skills uses a similar flow: 

• The student is presented with a question generated by Numbas, which may include some 

randomisation; 

• The student tackles the problem on the external software, to obtain an answer; 

• Returning to Numbas, the student inputs their answer. Behind the scenes, Numbas can make 

the same calculations as the external software, and therefore can mark the answer and offer 

feedback. 

There is nothing particularly pioneering about this process; if you were to replace “external software” 

with “calculator” or “pen and paper” then this is no more than the regular workflow of using an e-

assessment system. The key parts are the generation of the data and subsequent parallel analysis 

that Numbas can make to mark the student’s work. Note that, using these methods, Numbas does 

not directly mark the student’s code. This does not mean that it cannot offer advice on the code 

required to obtain the answer, but it relies on these skills being assessed by other means if that is 

desired. Section 4 describes this hybrid approach to marking for some assessments. 

The following sections describe some of the different approaches used to develop questions: 

3.1. Scenario-based questions 

Assessing a student’s quantitative analysis of data inside external software is made possible by the 

flexibility of data types available to Numbas to store a copy of the data, including lists and arrays, 

and the JSON (JavaScript Object Notation) format, which is a lightweight, human-readable format 

for storing data.  

An early example of using Numbas with external software was for a module in quantitative methods 

with SPSS. The question in figures 3 and 4 assesses the student’s ability to import a file into SPSS, 

and to perform a two-sample t-test and Levene’s test of equal variances. The student is presented 

with a random binary SPSS file, of the sort that they are familiar with in other parts of their teaching 

materials. In this case, Numbas does not directly handle the data. Rather, for each scenario (file 
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presented to the student), the correct answers are computed in advance using SPSS, and stored in 

an array of scenarios in the JSON format, alongside the path to the corresponding data file (figure 

3).  

 

 

Figure 3. The variable definition in the Numbas Editor for the question illustrated in 

figure 4. The JSON format allows the structure of scenarios to be laid out, with each 

scenario containing the path to the relevant file and the correct answers associated 

with it. 

When the question is loaded (figure 4), one of the scenarios is chosen at random and the student 

receives a file to download. Once they have performed the analysis in SPSS, they return to Numbas 

to input their answers, and these are compared to the corresponding values for that scenario. 

The randomisation of this question is limited by the number of scenarios prepared. It does, however, 

demonstrate a model for a question that is flexible to any file type or external software, and relatively 

straightforward to prepare in Numbas, in that it is not necessary to follow along with the calculation 

of answers. 

3.2. Generating data files 

An alternative version of the SPSS question provides a data file in CSV (comma-separated values) 

format, which is text-based and can be generated on-the-fly by Numbas. The Numbas Statistical 

Functions extension supports many functions for sampling and statistical analysis, and can be used 

both to generate the data (for example for a particular distribution) and to compute the correct 

answers. This approach is used in several questions which ask the student to input a file to R and 

perform queries on the imported data. A similar approach was taken to generate SPSS data and 

answers by embedding R code inside a DEWIS question by Weir, et al, 2017. 

 

 

Numbas Editor interface for a scenario-based randomised SPSS question 

≈ 
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Figure 4. A randomised SPSS question in which the student is presented with a 

random file to download. Numbas marks the student’s input against the corresponding 

correct answer. 

 

 

Figure 5. In this practice question, which accompanies a handout on R data frames, 

students are instructed to load the TV data frame. Variables are used to randomise 

parts of the question, in this case the show and decade. 

Numbas randomised SPSS question 

 

A randomised question using an R data frame 
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3.3. R data frames 

The material for R teaching at stage one is centred on data frames from the IMDB (Internet Movie 

Database) film information, which is provided through an R package (Stagg, 2019). The data set 

contains metadata for the films along with aggregated user rating and is, anecdotally at least, 

engaging for students, who are familiar with the context and interested in the content. Students learn 

how to query and subset the data frame, different ways to plot and present the data, and later some 

basic statistical analysis. 

To offer practice material to students, we take advantage of the JSON format to store a copy of the 

data inside Numbas, in order to randomise and automatically mark questions. Figure 5 illustrates 

one such question.  

3.4. Numerical methods 

Numerical methods taught in stage two of the mathematics undergraduate degree include root 

finding, curve-fitting, numerical integration and solutions to ordinary differential equations. Many of 

the associated algorithms are well-defined and can be replicated in Numbas, which has the facility 

to include user-defined functions written in JavaScript. 

A question might ask a student to use MATLAB’s polyfit to fit a polynomial to a set of data points. 

Numbas can randomise the data itself and then replicate the functionality of the polyfit function to 

mark the student’s answer. The student could then be asked to calculate the sum of the squared 

residuals of the fit. Since Numbas has the student’s answers to the first part, it can also use adaptive 

marking to mark this part, as illustrated in figure 6. 

4. Assessment Methodology 

This section describes several different use cases for the Numbas questions in the numerical 

methods section of a stage 2 computing module. 

4.1. Formative material 

A Numbas practice test was provided for each of the four topics of the numerical methods section in 

the 2019/20 academic year. These tests have settings such that students receive immediate marking 

and feedback, can reveal answers and regenerate questions, whilst starting as many attempts as 

they like. Just over half of the 160 enrolled students took advantage of the tests. 

Student feedback on the practice material was very positive, with 80% indicating that the Numbas 

questions helped them to better understand the course material. Comments included, “the practice 

material was not only useful for the tests but also stimulating and engaging, which made me very 

interested in the module”.  

4.2. Written Assignment 

A short assignment forms part of the summative assessment on root finding and curve fitting, for 

which randomised questions offer some mitigation to the potential problem of solutions being shared. 

The assignment takes a hybrid approach, randomising each question and automatically marking 

some of the key results, whilst students are also asked to submit their code and a plot of their results, 

giving the opportunity to assess the students’ coding style and their presentation skills. 
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Figure 6. A MATLAB curve-fitting question. The student is provided with some random 

data and asked to fit a curve using MATLAB’s polyfit function. In this case they need to 

transform the function into a polynomial with a change of variables before using polyfit, 

so a common error is to fit 𝑓(𝑥) = 𝑎𝑥 + 𝑏 to the data. With this in mind, part b) uses 

adaptive marking to award the marks to a student who has gone wrong in part a), but 

subsequently carried out their calculation of the residuals correctly. Part b) also utilises 

the steps feature to provide advice on how to make the calculation. 

4.3. Class test 

The main component of assessment for the numerical methods section of the module is a class test. 

The class test is open book and students are allowed to use any resources with the exception of 

communication, through any medium. Like the written assignment, a hybrid test uses some subtle 

randomisation of Numbas questions, whilst students are also asked to upload their code through the 

virtual learning environment. Tests like these are held in computer clusters, which are not designed 

for administrating examinations and do not offer protection from students reading the screen of their 

neighbour. Though the test is invigilated, the randomisation again offers some additional protection.  

Adaptive marking applied to a curve-fitting question 
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Students are provided with a mock exam in the same format. Because some of the marking is 

automatic, this gives an opportunity to receive instant feedback on their work. All 160 students who 

sat the class test in the 2019/20 academic year had attempted the mock, with 343 attempts in total, 

at an average of 63 minutes spent on each attempt. Fifty-eight percent of 81 surveyed students 

responded that they prefer the online format to a paper mock test, though many commented that, as 

well as solutions given inside the advice sections of the Numbas questions, they would like the 

lecturer to work through the mock test in a lecture. 

5. Conclusions 

The development of Numbas material for computing modules in the mathematics curriculum has 

been a success to date. Students particularly appreciate the immediate feedback offered by the 

formative material that is associated with each module topic. However, there is relatively low uptake 

of the Numbas material compared to the number of student’s working through the handouts. At 

present, practice tests are separated from the handout on the same topic; Numbas can be embedded 

directly into web pages, and one possible solution is to replace the static questions in handouts with 

embedded Numbas questions, so that students can get feedback without disrupting their progress 

through the handout. 

The assessment material currently does not extend Numbas to marking computer code directly. This 

is a limitation, as a hybrid approach is required to directly assess students’ coding techniques and, 

for example, the presentation of results. Students would benefit from feedback on their code, 

especially in the introductory material for each programming language. Some early attempts have 

been made to add this functionality by connecting to an instance of the INGInious platform from 

Numbas, and indeed formative questions making use of this method were popular with students.  

Resources 

Example questions can be found in the Numbas editor in the Newcastle University Computing for 

Mathematics project (Graham, 2020). 
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Abstract  

Over the last ten years we have comprehensively embedded computational mathematics, and in 

doing so programming, into the undergraduate mathematics degree programmes at the University 

of Leeds. This case study discusses some of the practical, organisational and pedagogical issues 

we encountered, and how we addressed them.  

Keywords: computational mathematics, Python, employability. 

1. Introduction 

Although this special issue is about “programming in the mathematics curriculum”, this article is 

about the more specific topic of computational mathematics. Any definition of “computational 

mathematics” (beyond “the study and practice of solving mathematical problems with a computer”) 

might involve terms such as numerical analysis, algorithmic thinking, symbolic manipulation, 

computer-assisted proof or complexity theory. Certainly each of these topics contains sufficient 

mathematics, and computation, to fill a course for undergraduates. They might, or might not, also 

require a student to learn to program a computer. 

A review of computer programming provision (Sangwin & O’Toole, 2017) within UK mathematics 

programmes states that computing is “more popular amongst applied mathematicians and 

statisticians”, with “very few explicit pure mathematics courses” within their sample of programming 

modules. Our view is that undergraduate computational mathematics should be as broad as 

possible. We argue to our students that there are two good reasons to turn to a computer when 

confronting a mathematical problem: when you know exactly what you want to do, and when you 

don’t. The first of these is typically applied mathematics and numerical methods – we have a set of 

routine calculations to perform, and lack only the time to do these ourselves. The second covers 

more open-ended problems, possibly with no known solution, where we use a computer to seek 

evidence, visualise possible solutions, reveal mechanisms and aid our understanding.  

Our approach is best illustrated with a typical pair of questions: 

1. Write a function that performs Euclid’s algorithm on a pair of positive integers 𝑎 >  𝑏, 

returning their greatest common divisor. 

2. Investigate the following results of Lamé and Heilbronn: 

a. The number of steps required by Euclid’s algorithm is at most 5 times the number of 

digits of 𝑏.  

b. On average the number of steps required is equal to 
12ln2

𝜋2 log10𝑎 for all pairs 𝑎, 𝑏.  

c. The number of steps is maximised when 𝑎 and 𝑏 are consecutive Fibonacci numbers. 

Notice that the question requires the students both to convert a familiar algorithmic process into 

computer code, and to explore for themselves mathematical facts that are likely to be beyond their 
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current mathematical sophistication to prove. We found it relatively easy, and quite liberating, to 

devise such questions of this nature, including topics such as the Collatz conjecture, elementary 

number theory (e.g. Goldbach’s conjecture and Euler bricks), continued fractions, iterated function 

systems, sorting algorithms and cryptography. 

Thus our purpose in developing a set of modules on computational mathematics at the University of 

Leeds was: to introduce mathematical problems which are appropriate for solving with a computer; 

to see why some problems are not suitable for solving in this way; to present some fundamental 

techniques in mathematical computation; to encourage an investigative spirit in attacking problems 

which are not intended to be solved completely. We promote this independent approach to learning 

by scheduling only one hour of lecture time per week for material delivery, leaving the bulk of student 

time to smaller workshop sessions staffed by a team of demonstrators. 

“doing my own research made me feel truly more independent and free to let my mathematical 

creativity flow, which can't always be the case” (Anonymous student feedback, 2019) 

Clearly, studying computational mathematics in this sense inevitably involves learning rudimentary 

programming techniques. Thus, computational mathematics provides students with an opportunity 

to acquire valuable transferrable skills, much as delivering oral presentations on mathematical topics 

provides offers both narrow curricular and broader life-skill benefits. Both activities provide 

mechanisms to broaden students’ range of experience without diluting core mathematical content. 

Indeed our syllabus often supports the rigorous mathematical content of other modules. 

“I enjoyed the freedom to learn many things through one, gaining a deeper understanding of 

mathematics, increasing my ability to solve problems, and learning how to program”  

(Anonymous student feedback, 2018) 

In Leeds, and likely in many places, our introduction of this module was not the very first step towards 

introducing computation into the mathematics curriculum. There were already a small number of 

computational components in the form of worksheets using proprietary mathematical software such 

as Matlab, Maple, and Mathematica. But these were not the best use of limited resources (financial 

or time) and mutually incompatible. Thus, introducing computational mathematics was not wholly 

new, but rather the opportunity to replace legacy teaching methods with expanded modern ones. 

This case study describes challenges and (our) solutions in devising a practical computational 

mathematics module (initially), and then a suite of modules. In the spirit of programming, we describe 

these challenges as bugs, and give our fixes to these problems in the context of a large UK university 

mathematics department. Of course, such problems may differ in their reproducibility across different 

institutions, as may the viability of solutions.  

2. Planning the module 

Bug summary: Colleagues hate the idea. 

Bug description: There is distrust among academic colleagues in mathematics that programming 

is something we should introduce into our curriculum. Don’t many students choose a degree in 

Mathematics precisely because they don’t want to work with computers? Isn’t this diverting student 

(and staff) time away from our core task of learning (and teaching) mathematics? 

Fix: There were four arguments we made to colleagues, and the combination was compelling. 
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(i) Our external advisory board (which comprises local and national employers in a range of 

industries and services) had given a strong steer that they would value greater 

computational skills in mathematics graduates. See CBI/Pearson (2019) for development 

of this point. 

(ii) In an environment in which we were encouraged, and keen, to develop our provision of 

“employability” skills within the mathematics curriculum, programming expertise seemed 

the natural way to achieve this whilst retaining mathematical content.  

(iii) With growing student numbers, and final year projects becoming more individual and 

resource-intensive, having a student cohort who were confident at investigation was 

clearly desirable. We argued that computational mathematics formed the ideal place to 

introduce problems which may not be soluble by an undergraduate mathematician, but 

which are amenable to experimentation and investigation. 

(iv) Importantly, we appealed to a wide cross-section of academic colleagues. This module 

was never intended to simply be numerical analysis. Both pure and applied 

mathematicians became convinced that the content of the computational mathematics 

module was relevant to their field. Elementary number theory provides a wonderful pool 

of problems for investigation, while automatic theorem proving, an area of pure 

mathematics in which Leeds has research expertise, has been developed within our 

undergraduate programming syllabus. 

Bug summary: We don’t know what language to choose. 

Bug description: Institutions may have reasons to choose different languages (the need to prepare 

students to use particular software in later years; existing proprietorial software deals; the expertise 

of whoever is developing and teaching the module).  

Fix: Several factors led us to choose Python as the single language for the module. Firstly, we 

wished to move away from proprietary mathematical software. Sangwin & O’Toole (2017) found 

Matlab to be the most popular language in compulsory year 1 modules mathematics degrees in the 

UK (of those institutions who responded). Maple is also well represented, and had previously been 

in use at Leeds within first year modules, albeit in a somewhat peripheral capacity. A comparison 

between Python and Matlab (and R) in a pedagogical setting is (Ozgur et al., 2017). However, and 

regardless of any financial incentive, we saw a real opportunity in switching to a general purpose 

programming language, in that it would allow us to offer our students a genuine transferrable skill, 

valued by employers (we will return to this point below).  

“I feel I have learnt a lot of practical skills to take into the workplace”  

(Anonymous student feedback, 2019) 

As well as being free and general-purpose, we wanted something with a quick entry time for first-

time programmers. Python proved well-suited to this, in our case via the open-source distribution 

Anaconda and its interface Spyder. We found this straightforward to install on institution-wide cluster 

machines, and quick and easy for individual students on their own Windows, Linux and Mac OS X 

machines. Crucially all such installations looked and operated in essentially identical ways. 

Python is generally recognised as being a good choice for first-time programmers, a judgement with 

which we agree: it is dynamically-typed, “duck-typed” (meaning that objects generally behave in 

accordance with naïve expectation), it has a relatively small vocabulary of keywords most of which 

are simple English terms, the use of indentation aids readability, it compiles on-the-fly. Thus the 

journey to the execution of a first “hello world” programme is as quick and simple as for any language 

(and much more so than, say, C or Java). 
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A relevant example of Python’s duck-typing can be seen by entering “3/2” (dividing the integer 3 by 

the integer 2). Python 3 automatically outputs a float (1.5). It is easy to take this silent type-change 

for granted, and in a mathematical setting we often find it convenient to do so (in other cases we 

deploy integer division 3//2). However, it is also worth spending a moment on the powerful 

pedagogical point here, that a computer is only ever representing the idea of mathematical quantity, 

and it may usefully do so in different ways (as illustrated by Python 2 interpreting “/” differently). 

Thus we have found that Python represents a better balance than say C or Java, in terms of the 

relative prominence of syntactic versus mathematical or algorithmic concerns for beginner 

programmers. This is also illustrated by the kinds of error that such students make. All programming 

languages are liable both to syntax errors (such as, in Python, confusing “=” and “==”) and 

logic/semantic errors in which (roughly speaking) the code runs or compiles but does not behave as 

intended. However, our experience is that the relative prevalence of these types of error differs: in C 

& Java syntactic errors predominate, while in Python beginning students spend longer grappling with 

semantic/logic errors. We view this as positive, as these errors have greater 

mathematical/algorithmic educational value. 

Python, we argue, allows mathematical and algorithmic aspects to come to the fore rather than being 

concealed behind technicalities. Consider Figure 1, a Python programme for implementing Euclid’s 

algorithm (and thus a possible solution to question 1 in Section 1). The coding can be done in four 

short lines using a small number of simple commands, allowing the student to focus on the 

(significantly more challenging) mathematical matter of understanding how this programme achieves 

its goal: 

 

Figure 3: A simple Python function to compute the greatest common divisor of integers 

a and b. 

 

Note the single line in which a and b are re-assigned to the values of b and (a mod b) respectively. 

Single-line multiple assignment is possible in Python, but not in C or Java, where either the 

introduction of a temporary variable, or some other method, would be required. Features of this sort, 

such as list comprehensions, dictionaries and function decorators are typical in Python, and we have 

found them highly appropriate for computational mathematics. Notice, for instance, the code Y = 

[myfunction(x) for x in X] which illustrates list comprehension is highly reminiscent of 

applying a mathematical function to every object in a domain X, to obtain its range Y. Thus Y = 

[x**2 for x in range(10)] is, we claim, not only more elegant than writing a loop, but is more 

mathematically intuitive. The “Zen of Python” (Peters, 2004) contains several guiding principles 

which we believe also encapsulate mathematical attitudes: beautiful is better than ugly; explicit is 

better than implicit*; simple is better than complex; complex is better than complicated. 

 

* We are grateful to the anonymous reviewer for fairly objecting that the earlier remarks about dynamical typing could be 

seen to contradict this proverb. We might respond by drawing distinctions between explicitness at the level of code (which 
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Python also carries the benefit of being increasingly popular in the industries in which our graduates 

typically seek employment. The TIOBE Company maintains the TIOBE Programming Community 

Index, a popularity metric for programming languages as measured by a variety of internet search 

tools. Figure 2 puts Python firmly in third place, behind Java and C, but growing significantly in 

popularity in recent years. 

 

Bug summary: I worry about accessibility and inclusivity. 

Bug description: The particular software used may not be fully accessible and care must be taken 

to meet the needs of all students. 

Fix: Of course solutions need to be personalised to meet the individual needs of students. We give 

a particular example of a visually impaired student who was worried about being able to use the 

software efficiently and effectively. After listening to her describe her particular requirements, we 

were able to help her set up her interface, using a combination of control key-strokes and 

magnification. She found Spyder more accessible than notebooks, and said:   

“Firstly, I’d set my screen up so that it was split vertically with the python console on one side and 

the editor window on the other side. I found this was the best way to fit the most information on the 

screen when you’d enlarged the text. To enlarge the text I would [use key-strokes] to zoom in to 

specific sections of the code, [together with] the standard Windows magnifier [to navigate the 

software features]. Using these two magnification techniques I managed to navigate my way 

around Spyder and the specific code quite effectively”. 

 

is desirable) versus at the level of the language itself (where the suppression of declaration of variables is convenient), 

and between explicitness in describing procedures versus that describing objects. However, we do not have the space to 

develop such arguments further. 

Figure 4: Popularity ratings of various languages from the TIOBE Programming 

Community (TIOBE, 2020) 
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We also note that there are communities working towards the inclusivity and accessibility of Project 

Jupyter’s software, including iPython notebooks (GitHub, 2019). 

3. Running the module 

Bug summary: Marking students’ work is time-consuming 

Bug description: With a class of over 300 students, each submitting 10 pieces of coursework (3 

summative, 7 formative) through the semester, our module undeniably entailed a great deal of 

marking. 

Fix: Recruiting extra staff to help with the marking is likely an unavoidable part of the solution (our 

module has a team of 5 or 6 markers, either postgraduate students or tutorial assistants). 

Nevertheless, the use of appropriate technology has allowed us to bring the problem down to 

manageable proportions (and we hope for further improvements to come).  

In 2019, we worked with colleagues Craig Evans and Samuel Wilson from the School of Electronic 

and Electrical Engineering, to adapt their automatic feedback and assessment platform (Evans and 

Wilson 2019) to the specific needs of our module. This system tests the Python functions within 

submissions against specified inputs, generating a feedback text file for each student. It is thus 

automatic to judge functions as being correct, and to identify common errors and award partial marks 

accordingly. Human input is concentrated in places where it is essential: in setting up the marking 

system, in identifying uncommon errors (and hopefully thereby improving the system), in making 

sense of error-strewn submissions, and most valuably in assessing styles of questions which cannot 

be done automatically. These include plotting graphs, commenting on the results of experiments, 

performing open-ended investigations such as question 2 in section 1. (We remark that solutions to 

such questions are also much harder to plagiarise, which forms an important part of our strategy in 

that regard.) 

Another benefit of automatic marking has been that students get accustomed to working under 

tighter instructions: in our system functions must be given specific names, they must accept inputs 

of a given type, and they must output their results in a specified format. Any deviation from these 

requirements will cause the automatic marker to fail, and students are now used to marks being lost 

in such cases. 

4. Developing computational mathematics further 

Bug summary: After the module, students want to do more computational mathematics. 

Bug description: This should be welcomed as a success, of course. Nevertheless, there is a risk 

of either disappointing enthusiastic students or creating additional pressure on already crowded 

timetables. 

Fix: Although it would be possible to create an entire follow-on module entitled “Advanced 

Computational Mathematics”, there was little appetite for this among staff. Rather our approach has 

been to embed further computation in pre-existing modules, in two ways. 

The computational mathematics module we have discussed runs in the first semester of second 

year. We created computational ‘add-ons’ to existing second year (second semester) modules. 

There are currently three such, that have been brought in at different times. In each case, a pre-

existing 10 credit module was supplemented with a new 5 credit computational part. Students can 

either study the original 10 credit theoretical module or the new 15 credit “with computation” variant. 
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We have such modules in Numerical Analysis, Discrete Mathematics, and Logic. In each there are 

twin aims: to apply computational methods in the given setting, and to develop Python techniques 

for which there was little or no time in the Computational Mathematics module. For instance, in 

Discrete Mathematics with Computation, students learn to build recursively defined functions; in 

Numerical Analysis with Computation students construct new classes for rational numbers and learn 

how to handle vectors and matrices efficiently. 

All Leeds students undertake a research project which runs through both semesters of their final 

year. Third year mathematicians select their project from a published list of over 50 titles. These vary 

widely in subject-matter (pure, applied, statistical, financial) and in the tools and techniques required. 

However, several such projects require computation of assorted kinds, in either major or minor ways. 

Indeed, one of the goals of the introduction of our Computational Mathematics module was to allow 

the scope of such projects to be broadened. For example, there are projects on discrete random 

processes, automatic puzzle-solving, and numerical equation solving. Students’ prior knowledge of 

Python has undoubtedly extended the possibilities here. To broaden the range still further and cater 

to the most enthusiastic students, we initiated a dedicated project-title on “Computational Applied 

Mathematics” in which students select from several topics including implementing Fast Fourier 

Transforms and modelling a nonlinear pendulum. 
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